chromatin state
Recently Published Documents


TOTAL DOCUMENTS

277
(FIVE YEARS 101)

H-INDEX

48
(FIVE YEARS 8)

2022 ◽  
Author(s):  
Tim Stuart ◽  
Avi Srivastava ◽  
Shaista Madad ◽  
Caleb A. Lareau ◽  
Rahul Satija

2022 ◽  
Author(s):  
Liubov Gapa ◽  
Huda Alfardus ◽  
Wolfgang Fischle

Chromatin, the complex of DNA and histone proteins, serves as a main integrator of cellular signals. Increasing evidence links cellular functional to chromatin state. Indeed, different metabolites are emerging as modulators of chromatin function and structure. Alterations in chromatin state are decisive for regulating all aspects of genome function and ultimately have the potential to produce phenotypic changes. Several metabolites such as acetyl-CoA, S-adenosyl methionine (SAM) or adenosine triphosphate (ATP) have now been well characterized as main substrates or cofactors of chromatin modifying enzymes. However, there are other metabolites that can directly interact with chromatin influencing its state or that modulate the properties of chromatin regulatory factors. Also, there is a growing list of atypical enzymatic and non-enzymatic chromatin modifications that originate from different cellular pathways that have not been in the limelight of chromatin research. Here, we summarize different properties and functions of uncommon regulatory molecules originating from intermediate metabolism of lipids, carbohydrates and amino acids. Based on the various modes of action on chromatin and the plethora of putative, so far not described chromatin regulating metabolites, we propose that there are more links between cellular functional state and chromatin regulation to be discovered. We hypothesize that these connections could provide interesting starting points for interfering with cellular epigenetic states at a molecular level.


2022 ◽  
Vol 23 (1) ◽  
Author(s):  
Ha Vu ◽  
Jason Ernst

Abstract Background Genome-wide maps of chromatin marks such as histone modifications and open chromatin sites provide valuable information for annotating the non-coding genome, including identifying regulatory elements. Computational approaches such as ChromHMM have been applied to discover and annotate chromatin states defined by combinatorial and spatial patterns of chromatin marks within the same cell type. An alternative “stacked modeling” approach was previously suggested, where chromatin states are defined jointly from datasets of multiple cell types to produce a single universal genome annotation based on all datasets. Despite its potential benefits for applications that are not specific to one cell type, such an approach was previously applied only for small-scale specialized purposes. Large-scale applications of stacked modeling have previously posed scalability challenges. Results Using a version of ChromHMM enhanced for large-scale applications, we apply the stacked modeling approach to produce a universal chromatin state annotation of the human genome using over 1000 datasets from more than 100 cell types, with the learned model denoted as the full-stack model. The full-stack model states show distinct enrichments for external genomic annotations, which we use in characterizing each state. Compared to per-cell-type annotations, the full-stack annotations directly differentiate constitutive from cell type-specific activity and is more predictive of locations of external genomic annotations. Conclusions The full-stack ChromHMM model provides a universal chromatin state annotation of the genome and a unified global view of over 1000 datasets. We expect this to be a useful resource that complements existing per-cell-type annotations for studying the non-coding human genome.


2021 ◽  
Author(s):  
Chia-Yeh Lin ◽  
Yao-Ming Chang ◽  
Hsin-Yi Tseng ◽  
Yen-Ling Shih ◽  
Hsiao-Hui Yeh ◽  
...  

Congenital heart disease (CHD) is often rooted in aberrant gene expression during heart development. As cells commit to a specific lineage during development, chromatin dynamics and developmental plasticity generally become more limited. However, it remains unclear how differentiated cardiomyocytes (CMs) undergo morphological and functional adaptations to the postnatal environment during the process of CM maturation. We sought to investigate the regulatory mechanisms that control postnatal cardiac gene networks. A time-series transcriptomic analysis of postnatal hearts revealed an integrated, time-ordered transcriptional network that regulates CM maturation. Remarkably, depletion of histone H2B ubiquitin ligase RNF20 after formation of the four-chamber heart disrupted these highly coordinated gene networks. As such, its ablation caused early-onset cardiomyopathy, a phenotype reminiscent of CHD. Furthermore, the dynamic modulation of chromatin accessibility by RNF20 during CM maturation was necessary for the operative binding of cardiac transcription factors that drive transcriptional gene networks. Together, our results reveal how epigenetic-mediated chromatin state transitions modulate time-ordered gene expression for CM maturation.


BMC Cancer ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Garrett L. Ruff ◽  
Kristin E. Murphy ◽  
Zachary R. Smith ◽  
Paula M. Vertino ◽  
Patrick J. Murphy

Abstract Background Chromatin state provides a clear decipherable blueprint for maintenance of transcriptional patterns, exemplifying a mitotically stable form of cellular programming in dividing cells. In this regard, genomic studies of chromatin states within cancerous tissues have the potential to uncover novel aspects of tumor biology and unique mechanisms associated with disease phenotypes and outcomes. The degree to which chromatin state differences occur in accordance with breast cancer features has not been established. Methods We applied a series of unsupervised computational methods to identify chromatin and molecular differences associated with discrete physiologies across human breast cancer tumors. Results Chromatin patterns alone are capable of stratifying tumors in association with cancer subtype and disease progression. Major differences occur at DNA motifs for the transcription factor FOXA1, in hormone receptor-positive tumors, and motifs for SOX9 in Basal-like tumors. We find that one potential driver of this effect, the histone chaperone ANP32E, is inversely correlated with tumor progression and relaxation of chromatin at FOXA1 binding sites. Tumors with high levels of ANP32E exhibit an immune response and proliferative gene expression signature, whereas tumors with low ANP32E levels appear programmed for differentiation. Conclusions Our results indicate that ANP32E may function through chromatin state regulation to control breast cancer differentiation and tumor plasticity. This study sets a precedent for future computational studies of chromatin changes in carcinogenesis.


2021 ◽  
pp. 1-9
Author(s):  
Shannon Dupont ◽  
Blanche Capel

At embryonic day (E) 10.5, prior to gonadal sex determination, XX and XY gonads are bipotential and able to differentiate into either a testis or an ovary. At this point, they are transcriptionally and morphologically indistinguishable. Sex determination begins around E11.5 in the mouse when the supporting cell lineage commits to either Sertoli or granulosa cell fate. Testis-specific factors such as SRY and SOX9 drive differentiation of bipotential-supporting cells into the Sertoli cell pathway, whereas ovary-specific factors like WNT4 and FOXL2 guide differentiation into granulosa cells. It is known that these 2 pathways are mutually antagonistic, and repression of the alternative fate is critical for maintenance of the testis or ovary programs. While we understand much about the transcription factor networks guiding the process of sex determination, it is only more recently that we have begun to understand how this process is epigenetically controlled. Studies in the past decade have demonstrated the importance of the chromatin state for gene expression and cell fate commitment, with histone modifications and DNA accessibility having a direct role in gene regulation. It is now clear that the chromatin state during sex determination is dynamic and likely critical for the establishment and/or maintenance of the transcriptional programs. Prior to sex determination, supporting cells have similar chromatin structure and histone modification profiles, reflecting the bipotential nature of these cells. After differentiation to Sertoli or granulosa cells, the chromatin state acquires sex-specific profiles. The proteins that regulate the deposition of histone modifications or the opening of compact chromatin likely play an important role in Sertoli and granulosa cell fate commitment and gonad development. Here, we describe studies profiling the chromatin state during gonadal sex determination and one example in which depletion of <i>Cbx2</i>, a member of the Polycomb Repressive Complex 1 (PRC1), causes male-to-female sex reversal due to a failure to repress the ovarian pathway.


2021 ◽  
Author(s):  
Longfei Ma ◽  
Dan Xie ◽  
Xiwen Lin ◽  
Hengyu Nie ◽  
Jian Chen ◽  
...  

The chromatin state undergoes global and dynamic changes during spermatogenesis, and is critical to chromosomal synapsis, meiotic recombination, and transcriptional regulation. However, the key regulators involved and the underlying molecular mechanisms remain poorly understood. Herein we report that mouse BEND2, one of the BEN-domain- containing proteins conserved in vertebrates, was specifically expressed in spermatogenic cells within a short time-window spanning meiotic initiation, and that it plays an essential role in the progression of prophase in meiosis I. Bend2 gene knockout in male mice arrested meiosis at the transition from zygonema to pachynema, disrupted synapsis and DNA double-strand break repair, and induced non-homologous chromosomal pairing. BEND2 interacted with a number of chromatin-associated proteins including ZMYM2, LSD1, CHD4, and ADNP,which are components of certain transcription-repressor complexes. BEND2-binding sites were identified in diverse chromatin states and enriched in simple sequence repeats. BEND2 contributed to shutting down the mitotic gene-expression program and to the activation of meiotic and post-meiotic gene expression, and it regulated chromatin accessibility as well as the modification of H3K4me3. Therefore, our study identified BEND2 as a novel and key regulator of meiosis, gene expression, and chromatin state during mouse spermatogenesis.


2021 ◽  
Author(s):  
Tim Stuart ◽  
Avi Srivastava ◽  
Shaista Madad ◽  
Caleb A. Lareau ◽  
Rahul Satija

Cell Reports ◽  
2021 ◽  
Vol 37 (6) ◽  
pp. 109967
Author(s):  
M. Andrés Blanco ◽  
David B. Sykes ◽  
Lei Gu ◽  
Mengjun Wu ◽  
Ricardo Petroni ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document