scholarly journals An Anomaly-Based Intrusion Detection System for the Smart Grid Based on CART Decision Tree

Author(s):  
Panagiotis I. Radoglou-Grammatikis ◽  
Panagiotis G. Sarigiannidis
2021 ◽  
Author(s):  
Nasim Beigi Mohammadi

Smart grid is expected to improve the efficiency, reliability and economics of current energy systems. Using two-way flow of electricity and information, smart grid builds an automated, highly distributed energy delivery network. In this thesis, we present the requirements for intrusion detection systems in smart grid, neighborhood area network (NAN) in particular. We propose an intrusion detection system (IDS) that considers the constraints and requirements of the NAN. It captures the communication and computation overhead constraints as well as the lack of a central point to install the IDS. The IDS is distributed on some nodes which are powerful in terms of memory, computation and the degree of connectivity. Our IDS uses an analytical approach for detecting Wormhole attack. We simulate wireless mesh NANs in OPNET Modeler and for the first time, we integrate our analytical model in Maple from MapleSoft with our OPNET simulation model.


2021 ◽  
pp. 1826-1839
Author(s):  
Sandeep Adhikari, Dr. Sunita Chaudhary

The exponential growth in the use of computers over networks, as well as the proliferation of applications that operate on different platforms, has drawn attention to network security. This paradigm takes advantage of security flaws in all operating systems that are both technically difficult and costly to fix. As a result, intrusion is used as a key to worldwide a computer resource's credibility, availability, and confidentiality. The Intrusion Detection System (IDS) is critical in detecting network anomalies and attacks. In this paper, the data mining principle is combined with IDS to efficiently and quickly identify important, secret data of interest to the user. The proposed algorithm addresses four issues: data classification, high levels of human interaction, lack of labeled data, and the effectiveness of distributed denial of service attacks. We're also working on a decision tree classifier that has a variety of parameters. The previous algorithm classified IDS up to 90% of the time and was not appropriate for large data sets. Our proposed algorithm was designed to accurately classify large data sets. Aside from that, we quantify a few more decision tree classifier parameters.


Sign in / Sign up

Export Citation Format

Share Document