Round-robin with credits: an improved scheduling strategy for rate-allocation in high-speed packet-switching

Author(s):  
S. Singh
1997 ◽  
Author(s):  
N.L. Taranenko ◽  
S.C. Tenbrink ◽  
K. Hsu ◽  
C.M. Miller

2015 ◽  
Vol 138 (2) ◽  
Author(s):  
Akira Maekawa ◽  
Atsushi Kawahara ◽  
Hisashi Serizawa ◽  
Hidekazu Murakawa

Primary water stress corrosion cracking (PWSCC) phenomenon in dissimilar metal welds is one of the safety issues in ageing pressurized water reactor (PWR) piping systems. It is well known that analysis accuracy of cracking propagation due to PWSCC depends on welding residual stress conditions. The U.S. Nuclear Regulatory Commission (NRC) and the Electric Power Research Institute (EPRI) carried out an international round robin validation program to evaluate and quantify welding residual stress analysis accuracy and uncertainty. In this paper, participation results of the authors in the round robin program were reported. The three-dimensional (3D) analysis based on a fast weld simulation using an iterative substructure method (ISM), was shown to provide accurate results in a high-speed computation. Furthermore, the influence of different heat source models on analysis results was investigated. It was demonstrated that the residual stress and distortion calculated using the moving heat source model were more accurate.


2016 ◽  
Vol 13 (3) ◽  
pp. 77-94
Author(s):  
Glenn Oliver ◽  
Jonathan Weldon ◽  
Chudy Nwachukwu ◽  
John Andresakis ◽  
John Coonrod ◽  
...  

Currently, there is no industry standard test method for measuring dielectric properties of circuit board materials at frequencies greater than ~10 GHz. Various material vendors and test laboratories apply different approaches to determine these properties. It is common for these different approaches to yield varying values of key properties such as permittivity and loss tangent. The D-24C Task Group of IPC has developed this round-robin program to assess these various methods from the “bottom up” to determine if standardized methods can be agreed upon to provide the industry with more accurate and valid characteristics of dielectrics used in high-frequency and high-speed applications.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Wentao Zhao ◽  
Ping Dong ◽  
Min Guo ◽  
Yuyang Zhang ◽  
Xuehong Chen

In the scenario of mobile fog computing (MFC), communication between vehicles and fog layer, which is called vehicle-to-fog (V2F) communication, needs to use bandwidth resources as much as possible with low delay and high tolerance for errors. In order to adapt to these harsh scenarios, there are important technical challenges concerning the combination of network coding (NC) and multipath transmission to construct high-quality V2F communication for cloud-aware MFC. Most NC schemes exhibit poor reliability in burst errors that often occur in high-speed movement scenarios. These can be improved by using interleaving technology. However, most traditional interleaving schemes for multipath transmission are designed based on round robin (RR) or weighted round robin (WRR), in practice, which can waste a lot of bandwidth resources. In order to solve those problems, this paper proposes a novel multipath transmission scheme for cloud-aware MFC, which is called Bidirectional Selection Scheduling (BSS) scheme. Under the premise of realizing interleaving, since BSS can be used in conjunction with a lot of path scheduling algorithms based on Earliest Delivery Path First (EDPF), it can make better use of bandwidth resources. As a result, BSS has high reliability and bandwidth utilization in harsh scenarios. It can meet the high-quality requirements of cloud-aware MFC for transmission.


Sign in / Sign up

Export Citation Format

Share Document