OnSeS: A Novel Online Short Text Summarization Based on BM25 and Neural Network

Author(s):  
Jianwei Niu ◽  
Qingjuan Zhao ◽  
Lei Wang ◽  
Huan Chen ◽  
Mohammed Atiquzzaman ◽  
...  

Text summarization is an area of research with a goal to provide short text from huge text documents. Extractive text summarization methods have been extensively studied by many researchers. There are various type of multi document ranging from different formats to domains and topic specific. With the application of neural networks for text generation, interest for research in abstractive text summarization has increased significantly. This approach has been attempted for English and Telugu languages in this article. Recurrent neural networks are a subtype of recursive neural networks which try to predict the next sequence based on the current state and considering the information from previous states. The use of neural networks allows generation of summaries for long text sentences as well. The work implements semantic based filtering using a similarity matrix while keeping all stop-words. The similarity is calculated using semantic concepts and Jiang Similarity and making use of a Recurrent Neural Network (RNN) with an attention mechanism to generate summary. ROUGE score is used for measuring the performance of the applied method on Telugu and English langauges .


Author(s):  
BalaAnand Muthu ◽  
Sivaparthipan CB ◽  
Priyan Malarvizhi Kumar ◽  
Seifedine Nimer Kadry ◽  
Ching-Hsien Hsu ◽  
...  

2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Siyuan Zhao ◽  
Zhiwei Xu ◽  
Limin Liu ◽  
Mengjie Guo ◽  
Jing Yun

Convolutional neural network (CNN) has revolutionized the field of natural language processing, which is considerably efficient at semantics analysis that underlies difficult natural language processing problems in a variety of domains. The deceptive opinion detection is an important application of the existing CNN models. The detection mechanism based on CNN models has better self-adaptability and can effectively identify all kinds of deceptive opinions. Online opinions are quite short, varying in their types and content. In order to effectively identify deceptive opinions, we need to comprehensively study the characteristics of deceptive opinions and explore novel characteristics besides the textual semantics and emotional polarity that have been widely used in text analysis. In this paper, we optimize the convolutional neural network model by embedding the word order characteristics in its convolution layer and pooling layer, which makes convolutional neural network more suitable for short text classification and deceptive opinions detection. The TensorFlow-based experiments demonstrate that the proposed detection mechanism achieves more accurate deceptive opinion detection results.


2021 ◽  
Vol 2083 (4) ◽  
pp. 042044
Author(s):  
Zuhua Dai ◽  
Yuanyuan Liu ◽  
Shilong Di ◽  
Qi Fan

Abstract Aspect level sentiment analysis belongs to fine-grained sentiment analysis, w hich has caused extensive research in academic circles in recent years. For this task, th e recurrent neural network (RNN) model is usually used for feature extraction, but the model cannot effectively obtain the structural information of the text. Recent studies h ave begun to use the graph convolutional network (GCN) to model the syntactic depen dency tree of the text to solve this problem. For short text data, the text information is not enough to accurately determine the emotional polarity of the aspect words, and the knowledge graph is not effectively used as external knowledge that can enrich the sem antic information. In order to solve the above problems, this paper proposes a graph co nvolutional neural network (GCN) model that can process syntactic information, know ledge graphs and text semantic information. The model works on the “syntax-knowled ge” graph to extract syntactic information and common sense information at the same t ime. Compared with the latest model, the model in this paper can effectively improve t he accuracy of aspect-level sentiment classification on two datasets.


In a world where information is growing rapidly every single day, we need tools to generate summary and headlines from text which is accurate as well as short and precise. In this paper, we have described a method for generating headlines from article. This is done by using hybrid pointer-generator network with attention distribution and coverage mechanism on article which generates abstractive summarization followed by the application of encoder-decoder recurrent neural network with LSTM unit to generate headlines from the summary. Hybrid pointer generator model helps in removing inaccuracy as well as repetitions. We have used CNN / Daily Mail as our dataset.


2020 ◽  
Author(s):  
Muhammad Afzal ◽  
Fakhare Alam ◽  
Khalid Mahmood Malik ◽  
Ghaus M Malik

BACKGROUND Automatic text summarization (ATS) enables users to retrieve meaningful evidence from big data of biomedical repositories to make complex clinical decisions. Deep neural and recurrent networks outperform traditional machine-learning techniques in areas of natural language processing and computer vision; however, they are yet to be explored in the ATS domain, particularly for medical text summarization. OBJECTIVE Traditional approaches in ATS for biomedical text suffer from fundamental issues such as an inability to capture clinical context, quality of evidence, and purpose-driven selection of passages for the summary. We aimed to circumvent these limitations through achieving precise, succinct, and coherent information extraction from credible published biomedical resources, and to construct a simplified summary containing the most informative content that can offer a review particular to clinical needs. METHODS In our proposed approach, we introduce a novel framework, termed Biomed-Summarizer, that provides quality-aware Patient/Problem, Intervention, Comparison, and Outcome (PICO)-based intelligent and context-enabled summarization of biomedical text. Biomed-Summarizer integrates the prognosis quality recognition model with a clinical context–aware model to locate text sequences in the body of a biomedical article for use in the final summary. First, we developed a deep neural network binary classifier for quality recognition to acquire scientifically sound studies and filter out others. Second, we developed a bidirectional long-short term memory recurrent neural network as a clinical context–aware classifier, which was trained on semantically enriched features generated using a word-embedding tokenizer for identification of meaningful sentences representing PICO text sequences. Third, we calculated the similarity between query and PICO text sequences using Jaccard similarity with semantic enrichments, where the semantic enrichments are obtained using medical ontologies. Last, we generated a representative summary from the high-scoring PICO sequences aggregated by study type, publication credibility, and freshness score. RESULTS Evaluation of the prognosis quality recognition model using a large dataset of biomedical literature related to intracranial aneurysm showed an accuracy of 95.41% (2562/2686) in terms of recognizing quality articles. The clinical context–aware multiclass classifier outperformed the traditional machine-learning algorithms, including support vector machine, gradient boosted tree, linear regression, K-nearest neighbor, and naïve Bayes, by achieving 93% (16127/17341) accuracy for classifying five categories: aim, population, intervention, results, and outcome. The semantic similarity algorithm achieved a significant Pearson correlation coefficient of 0.61 (0-1 scale) on a well-known BIOSSES dataset (with 100 pair sentences) after semantic enrichment, representing an improvement of 8.9% over baseline Jaccard similarity. Finally, we found a highly positive correlation among the evaluations performed by three domain experts concerning different metrics, suggesting that the automated summarization is satisfactory. CONCLUSIONS By employing the proposed method Biomed-Summarizer, high accuracy in ATS was achieved, enabling seamless curation of research evidence from the biomedical literature to use for clinical decision-making.


Author(s):  
Mahsa Afsharizadeh ◽  
Hossein Ebrahimpour-Komleh ◽  
Ayoub Bagheri

Purpose: Pandemic COVID-19 has created an emergency for the medical community. Researchers require extensive study of scientific literature in order to discover drugs and vaccines. In this situation where every minute is valuable to save the lives of hundreds of people, a quick understanding of scientific articles will help the medical community. Automatic text summarization makes this possible. Materials and Methods: In this study, a recurrent neural network-based extractive summarization is proposed. The extractive method identifies the informative parts of the text. Recurrent neural network is very powerful for analyzing sequences such as text. The proposed method has three phases: sentence encoding, sentence ranking, and summary generation. To improve the performance of the summarization system, a coreference resolution procedure is used. Coreference resolution identifies the mentions in the text that refer to the same entity in the real world. This procedure helps to summarization process by discovering the central subject of the text. Results: The proposed method is evaluated on the COVID-19 research articles extracted from the CORD-19 dataset. The results show that the combination of using recurrent neural network and coreference resolution embedding vectors improves the performance of the summarization system. The Proposed method by achieving the value of ROUGE1-recall 0.53 demonstrates the improvement of summarization performance by using coreference resolution embedding vectors in the RNN-based summarization system. Conclusion: In this study, coreference information is stored in the form of coreference embedding vectors. Jointly use of recurrent neural network and coreference resolution results in an efficient summarization system.


Sign in / Sign up

Export Citation Format

Share Document