Charging of electric vehicles utilizing random wind: A stochastic optimization approach

Author(s):  
Mathew Goonewardena ◽  
Long Bao Le
Energies ◽  
2020 ◽  
Vol 13 (22) ◽  
pp. 6069
Author(s):  
Sajjad Haider ◽  
Peter Schegner

It is important to understand the effect of increasing electric vehicles (EV) penetrations on the existing electricity transmission infrastructure and to find ways to mitigate it. While, the easiest solution is to opt for equipment upgrades, the potential for reducing overloading, in terms of voltage drops, and line loading by way of optimization of the locations at which EVs can charge, is significant. To investigate this, a heuristic optimization approach is proposed to optimize EV charging locations within one feeder, while minimizing nodal voltage drops, cable loading and overall cable losses. The optimization approach is compared to typical unoptimized results of a monte-carlo analysis. The results show a reduction in peak line loading in a typical benchmark 0.4 kV by up to 10%. Further results show an increase in voltage available at different nodes by up to 7 V in the worst case and 1.5 V on average. Optimization for a reduction in transmission losses shows insignificant savings for subsequent simulation. These optimization methods may allow for the introduction of spatial pricing across multiple nodes within a low voltage network, to allow for an electricity price for EVs independent of temporal pricing models already in place, to reflect the individual impact of EVs charging at different nodes across the network.


2017 ◽  
Vol 56 (7) ◽  
pp. 1823-1833 ◽  
Author(s):  
Juan José Quiroz-Ramírez ◽  
Eduardo Sánchez-Ramírez ◽  
Salvador Hernández ◽  
Jorge Humberto Ramírez-Prado ◽  
Juan Gabriel Segovia-Hernández

Networks ◽  
2017 ◽  
Vol 69 (2) ◽  
pp. 189-204 ◽  
Author(s):  
Maciej Rysz ◽  
Pavlo A. Krokhmal ◽  
Eduardo L. Pasiliao

2021 ◽  
Vol 113 ◽  
pp. 104855
Author(s):  
Yanyan Yin ◽  
Lingshuang Kong ◽  
Chunhua Yang ◽  
Weihua Gui ◽  
Fei Liu ◽  
...  

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Anton Ochoa Bique ◽  
Leonardo K. K. Maia ◽  
Ignacio E. Grossmann ◽  
Edwin Zondervan

Abstract A strategy for the design of a hydrogen supply chain (HSC) network in Germany incorporating the uncertainty in the hydrogen demand is proposed. Based on univariate sensitivity analysis, uncertainty in hydrogen demand has a very strong impact on the overall system costs. Therefore we consider a scenario tree for a stochastic mixed integer linear programming model that incorporates the uncertainty in the hydrogen demand. The model consists of two configurations, which are analyzed and compared to each other according to production types: water electrolysis versus steam methane reforming. Each configuration has a cost minimization target. The concept of value of stochastic solution (VSS) is used to evaluate the stochastic optimization results and compare them to their deterministic counterpart. The VSS of each configuration shows significant benefits of a stochastic optimization approach for the model presented in this study, corresponding up to 26% of infrastructure investments savings.


Sign in / Sign up

Export Citation Format

Share Document