Deep Deterministic Policy Gradient Based Dynamic Power Control for Self-Powered Ultra-Dense Networks

Author(s):  
Han Li ◽  
Tiejun Lv ◽  
Xuewei Zhang
IEEE Access ◽  
2021 ◽  
pp. 1-1
Author(s):  
Chaohai Kang ◽  
Chuiting Rong ◽  
Weijian Ren ◽  
Fengcai Huo ◽  
Pengyun Liu

Nanophotonics ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Sean Hooten ◽  
Raymond G. Beausoleil ◽  
Thomas Van Vaerenbergh

Abstract We present a proof-of-concept technique for the inverse design of electromagnetic devices motivated by the policy gradient method in reinforcement learning, named PHORCED (PHotonic Optimization using REINFORCE Criteria for Enhanced Design). This technique uses a probabilistic generative neural network interfaced with an electromagnetic solver to assist in the design of photonic devices, such as grating couplers. We show that PHORCED obtains better performing grating coupler designs than local gradient-based inverse design via the adjoint method, while potentially providing faster convergence over competing state-of-the-art generative methods. As a further example of the benefits of this method, we implement transfer learning with PHORCED, demonstrating that a neural network trained to optimize 8° grating couplers can then be re-trained on grating couplers with alternate scattering angles while requiring >10× fewer simulations than control cases.


Author(s):  
Wooshik Myung ◽  
Donghyun Lee ◽  
Chenhang Song ◽  
Guanrui Wang ◽  
Cheng Ma

Sign in / Sign up

Export Citation Format

Share Document