Collective operations for wide-area message passing systems using adaptive spanning trees

Author(s):  
H. Saito ◽  
K. Taura ◽  
T. Chikayama
2007 ◽  
Vol 18 (05) ◽  
pp. 1107-1122 ◽  
Author(s):  
PARTHA SARATHI MANDAL ◽  
KRISHNENDU MUKHOPADHYAYA

Traditional message passing based checkpointing and rollback recovery algorithms perform well for tightly coupled systems. In wide area distributed systems these algorithms may suffer from large overhead due to message passing delay and network traffic. Mobile agents offer an attractive option for designing checkpointing schemes for wide area distributed systems. Network topology is assumed to be arbitrary. Processes are mobile agent enabled. When a process wants to take a checkpoint, it just creates one mobile agent. Concurrent initiations by multiple processes are allowed. Synchronization and creation of a consistent global state (CGS) for checkpointing is managed by the mobile agent(s). In the worst case, for k concurrent initiations among n processes, checkpointing algorithm requires a total of O(kn) hops by all the mobile agents. A mobile agent carries O(n/k) (on the average) size data.


1998 ◽  
Vol 24 (12-13) ◽  
pp. 1735-1749 ◽  
Author(s):  
Ian Foster ◽  
Jonathan Geisler ◽  
William Gropp ◽  
Nicholas Karonis ◽  
Ewing Lusk ◽  
...  

2000 ◽  
Author(s):  
Christopher J. Freitas ◽  
Derrick B. Coffin ◽  
Richard L. Murphy

Abstract Distributed parallel computing using message-passing techniques on Networks of Workstations (NOW) has achieved widespread use in the context of Local Area Networks (LAN). Recently, the concept of Grid-based computing using Wide Area Networks (WAN) has been proposed as a general solution to distributed high performance computing. The use of computers and resources at different geographic locations connected by a Wide Area Network and executing a real application introduces additional variables that potentially complicate the efficient use of these resources. Presented here are the results of a study that begins to characterize the performance issues of a WAN-based NOW, connecting resources that span an international border.


Author(s):  
D. E. Becker

An efficient, robust, and widely-applicable technique is presented for computational synthesis of high-resolution, wide-area images of a specimen from a series of overlapping partial views. This technique can also be used to combine the results of various forms of image analysis, such as segmentation, automated cell counting, deblurring, and neuron tracing, to generate representations that are equivalent to processing the large wide-area image, rather than the individual partial views. This can be a first step towards quantitation of the higher-level tissue architecture. The computational approach overcomes mechanical limitations, such as hysterisis and backlash, of microscope stages. It also automates a procedure that is currently done manually. One application is the high-resolution visualization and/or quantitation of large batches of specimens that are much wider than the field of view of the microscope.The automated montage synthesis begins by computing a concise set of landmark points for each partial view. The type of landmarks used can vary greatly depending on the images of interest. In many cases, image analysis performed on each data set can provide useful landmarks. Even when no such “natural” landmarks are available, image processing can often provide useful landmarks.


Author(s):  
K. K. Christenson ◽  
J. A. Eades

One of the strengths of the Philips EM-400 series of TEMs is their ability to operate under two distinct optical configurations: “microprobe”, the normal TEM operating condition which allows wide area illumination, and “nanoprobe”, which gives very small probes with high angular convergence for STEM imaging, microchemical and microstructural analyses. This change is accomplished by effectively turning off the twin lens located in the upper pole piece which changes the illumination from a telefocus system to a condenser-objective system. The deflection and tilt controls and alignments are designed for microprobe use and do not function properly when in nanoprobe. For instance, in nanoprobe the deflection control gives a mix of deflection and tilt; as does the tilt control.


Sign in / Sign up

Export Citation Format

Share Document