pole piece
Recently Published Documents


TOTAL DOCUMENTS

111
(FIVE YEARS 14)

H-INDEX

11
(FIVE YEARS 1)

Author(s):  
M. F. M. A. Halim ◽  
E. Sulaiman ◽  
R. Aziz ◽  
R. N. F. K. R. Othman ◽  
A. A. Rahman

Author(s):  
Xiaolong Yang ◽  
Ying Guan ◽  
You Li ◽  
Shanghan Gao

In order to solve the problem of reciprocating seal for hydraulic cylinder, a new structure of Magnetorheological fluid (MRF) reciprocating seal with increasing width of pole teeth and pole piece was designed. The theoretical analysis of MRF reciprocating seal is carried out. The magnetic field intensity distribution in the sealing gap of MRF reciprocating seal was analyzed by finite element method. According to the pressure capability formula of MRF, the theoretical pressure capability is calculated. The influences of structure parameters such as the number of magnetic sources, sealing gap height, pole teeth length, the ratio of permanent magnet height to its length, the ratio of pole piece height to shaft radius on the sealing capabilities were studied. The results showed that the pressure capability of MRF reciprocating seal increases with the increase of the number of magnetic sources and with the decrease of the sealing gap height. With the increase of the pole tooth length, the pressure capability of the reciprocating seal increases. With the increase of the ratio of permanent magnet height to its length, the pressure capability of the reciprocating seal increases first and then decreases. With the increase of the ratio of the pole piece height to shaft radius, the pressure capability of the MRF reciprocating seal increases first and then decreases.


Author(s):  
Chen Fan ◽  
Zhang Chongfeng ◽  
Yang Xiaolong

In order to solve the problem of short service life (2 months) and zero leakage of air cylinder in aerospace engineering, this paper innovatively designs a magnetic fluid sealing device of air cylinder in aerospace engineering through magnetic circuit analysis and magnetic fluid sealing theory. The magnetic field finite element method is used to calculate the magnetic field distribution in the sealing gap under different key parameters such as the number of pole teeth, the height of the radial sealing gap, the thickness of the permanent magnet, the slot width, the ratio of pole piece height to shaft. And numerical analysis of the number of pole teeth, the radial sealing gap height, permanent magnet thickness, slot width, the ratio of pole piece height to shaft and other key parameters on the magnetic fluid sealing performance. Finally, the reliability of the reciprocating magnetic fluid sealing withstand voltage is verified by experimental methods. Research indicates. The pressure capabilities of magnetic fluid sealing is increasing with the increase of the number of pole teeth. The pressure capabilities of magnetic fluid sealing is decreasing with the increase of the radial sealing gap. The sealing withstand voltage increases first and then decreases with the increase of the thickness of the permanent magnet, and finally increases, and the value of the withstand voltage is the largest when the thickness of the permanent magnet is 7.8 mm. The sealing pressure capabilities increases as the slot width increases. The sealing withstand voltage increases first and then decreases as the ratio of pole piece height to shaft increases, and when the ratio of pole piece height to shaft is 0.8, the sealing withstand voltage reaches a maximum value. The pressure test finally reaches the pressure value of 6 MPa, which can meet the pressure value demand of medium pressure cylinder, indicating that the magnetic fluid sealing technology can effectively solve the leakage problem existing in the air cylinder technology of Aerospace Engineering, and improve the reliability and service life of the air cylinder.


2021 ◽  
Vol 32 (4) ◽  
pp. 045405
Author(s):  
Yapeng Wu ◽  
Min Yang ◽  
Yishuai Wang ◽  
Honggang Li ◽  
ZhiGuo Gui ◽  
...  

Author(s):  
Mohd Firdaus M. A Halim ◽  
E. Sulaiman ◽  
R. N. F. K. R. Othman

In this paper, the CMG is re-condition so that the pole piece act as the outer rotor instead of surface mount PM. This magnetic coupling of the CMG is similar to the conventional CMG which uses harmonic to transfer the torque and speed from the inner rotor to the outer rotor. The working principle of the proposed CMG is derived analytically and simulated using finite element software. For this recondition, the PM at the outer section become stationary hence, retaining sleeve can be removing. The proposed MG produced 18% higher average torque than the conventional MG with drawback in torque ripple. The proposed CMG also produce higher gear ratio than the same pole pair of conventional CMG.


Sign in / Sign up

Export Citation Format

Share Document