A framework for privacy-preserving healthcare data sharing

Author(s):  
Lei Chen ◽  
Ji-Jiang Yang ◽  
Qing Wang ◽  
Yu Niu
Author(s):  
Yu Niu ◽  
Ji-Jiang Yang ◽  
Qing Wang

With the pervasive using of Electronic Medical Records (EMR) and telemedicine technologies, more and more digital healthcare data are accumulated from multiple sources. As healthcare data is valuable for both commercial and scientific research, the demand of sharing healthcare data has been growing rapidly. Nevertheless, health care data normally contains a large amount of personal information, and sharing them directly would bring huge threaten to the patient privacy. This paper proposes a privacy preserving framework for medical data sharing with the view of practical application. The framework focuses on three key issues of privacy protection during the data sharing, which are privacy definition/detection, privacy policy management, and privacy preserving data publishing. A case study for Chinese Electronic Medical Record (ERM) publishing with privacy preserving is implemented based on the proposed framework. Specific Chinese free text EMR segmentation, Protected Health Information (PHI) extraction, and K-anonymity PHI anonymous algorithms are proposed in each component. The real-life data from hospitals are used to evaluate the performance of the proposed framework and system.


2021 ◽  
Vol 11 (24) ◽  
pp. 11693
Author(s):  
Qianyu Wang ◽  
Shaowen Qin

This study examined the requirements for privacy-preserving and interoperability in healthcare data sharing and proposed a blockchain-based solution. The Hyperledger Fabric framework was adopted due to its enterprise-grade data processing capabilities and enhanced privacy protection functions. In addition to the Fabric’s built-in privacy-preserving functions, healthcare data-specific smart contracts with hierarchical access control were developed to strengthen privacy protection in data sharing. The proposed healthcare data-sharing framework is based on Australian medical practices with the aim to upgrade, rather than to replace, the existing data management models. The outcome of this study demonstrates the feasibility of applying blockchain technology to improve privacy-preservation while enhancing interoperability in healthcare data management.


2015 ◽  
pp. 1115-1130
Author(s):  
Yu Niu ◽  
Ji-Jiang Yang ◽  
Qing Wang

With the pervasive using of Electronic Medical Records (EMR) and telemedicine technologies, more and more digital healthcare data are accumulated from multiple sources. As healthcare data is valuable for both commercial and scientific research, the demand of sharing healthcare data has been growing rapidly. Nevertheless, health care data normally contains a large amount of personal information, and sharing them directly would bring huge threaten to the patient privacy. This paper proposes a privacy preserving framework for medical data sharing with the view of practical application. The framework focuses on three key issues of privacy protection during the data sharing, which are privacy definition/detection, privacy policy management, and privacy preserving data publishing. A case study for Chinese Electronic Medical Record (ERM) publishing with privacy preserving is implemented based on the proposed framework. Specific Chinese free text EMR segmentation, Protected Health Information (PHI) extraction, and K-anonymity PHI anonymous algorithms are proposed in each component. The real-life data from hospitals are used to evaluate the performance of the proposed framework and system.


Author(s):  
M.J.M. Chowdhury ◽  
A. S. M. Kayes ◽  
Paul Watters ◽  
Patrick Scolyer-Gray ◽  
Alex Ng

2020 ◽  
pp. 31-37
Author(s):  
Mustafa Tanriverdi ◽  

Sharing the electronic health data helps to increase the accuracy of the diagnoses and to improve the quality of health services. This shared data can also be used in medical research and can reduce medical costs. However, health data are fragmented across decentralized hospitals, this prevents data sharing and puts patients’ privacy at risks. In recent years, blockchain has revealed solutions that make life easier in many areas thanks to its distributed, safe and immutable structure. There are many blockchain-based studies in the literature on providing data privacy and sharing in different areas. In some studies, blockchain has been used with technologies such as cloud computing and cryptology. In the field of healthcare blockchain-based solutions are offered for the management and sharing of Electronic health records. In these solutions, private and consortium blockchain types are generally preferred and Public Key Infrastructure (PKI) and encryption are used for data privacy. Within the scope of this study, blockchain-based studies on the privacy preserving data sharing of health data were examined. In this paper, information about the studies in the literature and potential issues that can be studied in the future were discussed. In addition, information about current blockchain technologies such as smart contracts and PKI is also given.


2021 ◽  
Vol 58 (4) ◽  
pp. 102604
Author(s):  
Renpeng Zou ◽  
Xixiang Lv ◽  
Jingsong Zhao

2021 ◽  
Vol 11 (12) ◽  
pp. 3164-3173
Author(s):  
R. Indhumathi ◽  
S. Sathiya Devi

Data sharing is essential in present biomedical research. A large quantity of medical information is gathered and for different objectives of analysis and study. Because of its large collection, anonymity is essential. Thus, it is quite important to preserve privacy and prevent leakage of sensitive information of patients. Most of the Anonymization methods such as generalisation, suppression and perturbation are proposed to overcome the information leak which degrades the utility of the collected data. During data sanitization, the utility is automatically diminished. Privacy Preserving Data Publishing faces the main drawback of maintaining tradeoff between privacy and data utility. To address this issue, an efficient algorithm called Anonymization based on Improved Bucketization (AIB) is proposed, which increases the utility of published data while maintaining privacy. The Bucketization technique is used in this paper with the intervention of the clustering method. The proposed work is divided into three stages: (i) Vertical and Horizontal partitioning (ii) Assigning Sensitive index to attributes in the cluster (iii) Verifying each cluster against privacy threshold (iv) Examining for privacy breach in Quasi Identifier (QI). To increase the utility of published data, the threshold value is determined based on the distribution of elements in each attribute, and the anonymization method is applied only to the specific QI element. As a result, the data utility has been improved. Finally, the evaluation results validated the design of paper and demonstrated that our design is effective in improving data utility.


2021 ◽  
Author(s):  
Fuyuan Song ◽  
Zheng Qin ◽  
Jinwen Liang ◽  
Pulei Xiong ◽  
Xiaodong Lin

Sign in / Sign up

Export Citation Format

Share Document