Demand controlled ventilation strategies for high indoor air quality and low heating energy demand

Author(s):  
Yang Wang ◽  
Yunming Shao ◽  
Christian Kargel
Author(s):  
Farhang Tahmasebi ◽  
Yan Wang ◽  
Elizabeth Cooper ◽  
Daniel Godoy Shimizu ◽  
Samuel Stamp ◽  
...  

The Covid-19 outbreak has resulted in new patterns of home occupancy, the implications of which for indoor air quality (IAQ) and energy use are not well-known. In this context, the present study investigates 8 flats in London to uncover if during a lockdown, (a) IAQ in the monitored flats deteriorated, (b) the patterns of window operation by occupants changed, and (c) more effective ventilation patterns could enhance IAQ without significant increases in heating energy demand. To this end, one-year’s worth of monitored data on indoor and outdoor environment along with occupant use of windows has been used to analyse the impact of lockdown on IAQ and infer probabilistic models of window operation behaviour. Moreover, using on-site CO2 data, monitored occupancy and operation of windows, the team has calibrated a thermal performance model of one of the flats to investigate the implications of alternative ventilation strategies. The results suggest that despite the extended occupancy during lockdown, occupants relied less on natural ventilation, which led to an increase of median CO2 concentration by up to 300 ppm. However, simple natural ventilation patterns or use of mechanical ventilation with heat recovery proves to be very effective to maintain acceptable IAQ. Practical application: This study provides evidence on the deterioration of indoor air quality resulting from homeworking during imposed lockdowns. It also tests and recommends specific ventilation strategies to maintain acceptable indoor air quality at home despite the extended occupancy hours.


Facilities ◽  
2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Ulrika Uotila ◽  
Arto Saari ◽  
Juha-Matti Kalevi Junnonen ◽  
Lari Eskola

Purpose Poor indoor air quality in schools is a worldwide challenge that poses health risks to pupils and teachers. A possible response to this problem is to modify ventilation. Therefore, the purpose of this paper is to pilot a process of generating alternatives for ventilation redesign, in an early project phase, for a school to be refurbished. Here, severe problems in indoor air quality have been found in the school. Design/methodology/approach Ventilation redesign is investigated in a case study of a school, in which four alternative ventilation strategies are generated and evaluated. The analysis is mainly based on the data gathered from project meetings, site visits and the documents provided by ventilation and condition assessment consultants. Findings Four potential strategies to redesign ventilation in the case school are provided for decision-making in refurbishment in the early project phase. Moreover, the research presents several features to be considered when planning the ventilation strategy of an existing school, including the risk of alterations in air pressure through structures; the target number of pupils in classrooms; implementing and operating costs; and the size of the space that ventilation equipment requires. Research limitations/implications As this study focusses on the early project phase, it provides viewpoints to assist decision-making, but the final decision requires still more accurate calculations and simulations. Originality/value This study demonstrates the decision-making process of ventilation redesign of a school with indoor air problems and provides a set of features to be considered. Hence, it may be beneficial for building owners and municipal authorities who are engaged in planning a refurbishment of an existing building.


Sign in / Sign up

Export Citation Format

Share Document