Vector control of induction motor with fuzzy PI controller

Author(s):  
I. Miki ◽  
N. Nagai ◽  
S. Nishiyama ◽  
T. Yamada
2021 ◽  
Vol 11 (4) ◽  
pp. 7399-7404
Author(s):  
N. H. Mugheri ◽  
M. U. Keerio

The Induction Motor (IM) is popular because of its low price, higher efficiency, and low maintenance cost. A comparative analysis of IM speed controllers using Voltage/Frequency (V/F) control or Scalar Control (SC) is presented in this paper. SC is commonly used due to its ease of implementation, simplicity, and low cost. To decrease the difficulty and cost of hardware implementation, this paper proposes an optimal Fuzzy Proportional Integral (Fuzzy-PI) controller. Firstly, the speed of IM using the V/F control technique is discussed. Then, speed control of IM using a conventional PI controller is performed. Finally, a simplified-rules Fuzzy-PI controller is developed in MATLAB/SIMULINK and its performance is compared with that of open-loop SC and the traditional PI controller. The performance of the simplified-rules Fuzzy-PI controller is superior to that of an open-loop constant V/F control and a conventional PI controller.


Author(s):  
Salam Waley Shneen ◽  
Hashmia Sh. Dakheel ◽  
Zainab B. Abdulla

To design and implementation of variable and constant with no load for induction motor (IM) that is the goal in this work. This paper was including three parts, first the simulation model with no load for IM, Second the simulation model with constant load for IM, Third the simulation model with variable load for IM. In addition, this work includes comparative between two different controllers (PI and fuzzy logic control (FLC). The simulation results clearly the implementation of variable and constant with no load for IM. The simulation response of the system achieves better results when choosing to use type fuzzy-PI controller technique comparison with conventional PI controller and improve the performance of the system at different operation conditions.


Author(s):  
R. Gunabalan ◽  
V. Subbiah

<p>This paper directed the speed-sensorless vector control of induction motor drive with PI and fuzzy controllers.  Natural observer with fourth order state space model is employed to estimate the speed and rotor fluxes of the induction motor. The formation of the natural observer is similar to and as well as its attribute is identical to the induction motor. Load torque adaptation is provided to estimate the torque and rotor speed is estimated from the load torque, rotor fluxes and stator currents. There is no direct feedback in natural observer and also observer gain matrix is absent. Both the induction motor and the observer are characterized by state space model. Simple fuzzy logic controller and conventional PI controllers are used to control the speed of the induction motor in closed loop. MATLAB simulations are made with PI and fuzzy controllers and the performance of fuzzy controller is better than PI controller in view of torque ripples. The simulation results are obtained for various running conditions to exhibit the suitability of this method for sensorless vector control. Experimental results are provided for natual observer based sensorless vector control with conventional PI controller.</p>


Sign in / Sign up

Export Citation Format

Share Document