Modeling and analysis of fixed frequency phase-shift modulated tertiary-side parallel-tuned resonant DC-DC converter

Author(s):  
P. Jain ◽  
J.E. Quaicoe
2019 ◽  
Vol 20 (1) ◽  
pp. 279-291 ◽  
Author(s):  
Omar Abdel-Rahim ◽  
Nehmido Alamir ◽  
Mohamed Orabi ◽  
Mohamed Ismeil

2020 ◽  
Vol 142 (5) ◽  
Author(s):  
Arne Berthold ◽  
Frank Haucke

Abstract The cooling ratio on a dynamically forced 7 × 7 impingement jet array is studied experimentally. The current study is focused on determining the influence of a phase shift between every row of nozzles as well as the impact of a duty cycle variation on the cooling ratio. Both parameters are studied in dependency of the impingement distance (H/D = 2, 3, 5), the (nozzle-) Reynolds-number (ReD = 3200, 5200, 7200), and the excitation frequency (f = 0 Hz − 1000 Hz). For every set of parameters, the phase shift between every row of nozzles is varied between Φ=0% and 90%, while the variation of the duty cycle is performed between duty cycle (DC) = 35% and 65%. During all investigations, the dimensionless distance between adjacent nozzles is fixed at Sx/D = Sy/D = 5, and liquid crystal thermography is used to acquire the wall temperatures, which are further processed to calculate the local Nusselt numbers. Generally, the implementation of an excitation frequency allows a case-depending increase in the cooling ratio of up to 52%. Further implementation of a phase shift yields an additional frequency-depending improvement of the cooling ratio. In case of duty cycle variation, the best case revealed an additional 19% improvement in the cooling ratio.


2019 ◽  
Vol 26 (1) ◽  
pp. 159-169 ◽  
Author(s):  
K. Zhukovsky ◽  
A. Kalitenko

The harmonic power and bunching evolution in X-ray single-pass free-electron lasers (FELs) is modelled and the harmonic generation in a phase-shifted two-frequency FEL is explored. The advanced phenomenological FEL model, which is validated numerically and experimentally, is employed. The model accounts for major losses for each harmonic individually; it is compared with reported experimental data and with PERSEO numerical simulations, which are performed here for a variety of experiments. The latter cover the radiation wavelength range 0.15–300 nm. The phenomenological description is based on a few key FEL parameters: electron beam section, current, energy and its spread and divergence. The model is employed for modelling harmonic bunching and power evolution in a phase-shifted X-ray FEL with a two-frequency undulator, where lower harmonics with numbers less than nth are suppressed by the electron–photon phase shift of kπ/n, k = 2, 4, …, between the undulator sections. The benefits of the two-frequency phase-shifted FEL are highlighted. FEL-induced energy spread is shown to be three times lower than in a FEL without the phase-shift. The high-power harmonic and sub-harmonic radiation in such a FEL is demonstrated. In particular, powerful ∼14 GW X-ray radiation at λ5 = 0.15 nm from electrons with energy of 5.47 GeV and beam current ∼3.66 kA is possible in a two-frequency phase-shifted FEL at 30 m; this constitutes half of a FEL length where a common planar undulator radiates the same wavelength and power at the fundamental harmonic. Moreover, about a three times lower energy spread is induced by the dominant fifth harmonic, and the harmonic power can be thousands of times higher than in a common planar undulator FEL.


Sign in / Sign up

Export Citation Format

Share Document