IoT Data Acquisition Node For Deep Learning Time Series Prediction

Author(s):  
Li Xinyun ◽  
Liu Huidan ◽  
Yin Hang ◽  
Cao Zilan ◽  
Chen Bangdi ◽  
...  
Author(s):  
Sepp Hochreiter

Recurrent nets are in principle capable to store past inputs to produce the currently desired output. Because of this property recurrent nets are used in time series prediction and process control. Practical applications involve temporal dependencies spanning many time steps, e.g. between relevant inputs and desired outputs. In this case, however, gradient based learning methods take too much time. The extremely increased learning time arises because the error vanishes as it gets propagated back. In this article the de-caying error flow is theoretically analyzed. Then methods trying to overcome vanishing gradients are briefly discussed. Finally, experiments comparing conventional algorithms and alternative methods are presented. With advanced methods long time lag problems can be solved in reasonable time.


Atmosphere ◽  
2020 ◽  
Vol 11 (5) ◽  
pp. 487 ◽  
Author(s):  
Trang Thi Kieu Tran ◽  
Taesam Lee ◽  
Ju-Young Shin ◽  
Jong-Suk Kim ◽  
Mohamad Kamruzzaman

Time series forecasting of meteorological variables such as daily temperature has recently drawn considerable attention from researchers to address the limitations of traditional forecasting models. However, a middle-range (e.g., 5–20 days) forecasting is an extremely challenging task to get reliable forecasting results from a dynamical weather model. Nevertheless, it is challenging to develop and select an accurate time-series prediction model because it involves training various distinct models to find the best among them. In addition, selecting an optimum topology for the selected models is important too. The accurate forecasting of maximum temperature plays a vital role in human life as well as many sectors such as agriculture and industry. The increase in temperature will deteriorate the highland urban heat, especially in summer, and have a significant influence on people’s health. We applied meta-learning principles to optimize the deep learning network structure for hyperparameter optimization. In particular, the genetic algorithm (GA) for meta-learning was used to select the optimum architecture for the network used. The dataset was used to train and test three different models, namely the artificial neural network (ANN), recurrent neural network (RNN), and long short-term memory (LSTM). Our results demonstrate that the hybrid model of an LSTM network and GA outperforms other models for the long lead time forecasting. Specifically, LSTM forecasts have superiority over RNN and ANN for 15-day-ahead in summer with the root mean square error (RMSE) value of 2.719 (°C).


2019 ◽  
Vol 57 (6) ◽  
pp. 114-119 ◽  
Author(s):  
Yuxiu Hua ◽  
Zhifeng Zhao ◽  
Rongpeng Li ◽  
Xianfu Chen ◽  
Zhiming Liu ◽  
...  

2020 ◽  
Vol 13 (3) ◽  
pp. 915-927 ◽  
Author(s):  
Dostdar Hussain ◽  
Tahir Hussain ◽  
Aftab Ahmed Khan ◽  
Syed Ali Asad Naqvi ◽  
Akhtar Jamil

Sign in / Sign up

Export Citation Format

Share Document