Cross-validation Metrics for Evaluating Classification Performance on Imbalanced Data

Author(s):  
Ni Wayan Surya Wardhani ◽  
Masithoh Yessi Rochayani ◽  
Atiek Iriany ◽  
Agus Dwi Sulistyono ◽  
Prayudi Lestantyo
2021 ◽  
Vol 25 (5) ◽  
pp. 1169-1185
Author(s):  
Deniu He ◽  
Hong Yu ◽  
Guoyin Wang ◽  
Jie Li

The problem of initialization of active learning is considered in this paper. Especially, this paper studies the problem in an imbalanced data scenario, which is called as class-imbalance active learning cold-start. The novel method is two-stage clustering-based active learning cold-start (ALCS). In the first stage, to separate the instances of minority class from that of majority class, a multi-center clustering is constructed based on a new inter-cluster tightness measure, thus the data is grouped into multiple clusters. Then, in the second stage, the initial training instances are selected from each cluster based on an adaptive candidate representative instances determination mechanism and a clusters-cyclic instance query mechanism. The comprehensive experiments demonstrate the effectiveness of the proposed method from the aspects of class coverage, classification performance, and impact on active learning.


2021 ◽  
pp. 1-16
Author(s):  
Fang He ◽  
Wenyu Zhang ◽  
Zhijia Yan

Credit scoring has become increasingly important for financial institutions. With the advancement of artificial intelligence, machine learning methods, especially ensemble learning methods, have become increasingly popular for credit scoring. However, the problems of imbalanced data distribution and underutilized feature information have not been well addressed sufficiently. To make the credit scoring model more adaptable to imbalanced datasets, the original model-based synthetic sampling method is extended herein to balance the datasets by generating appropriate minority samples to alleviate class overlap. To enable the credit scoring model to extract inherent correlations from features, a new bagging-based feature transformation method is proposed, which transforms features using a tree-based algorithm and selects features using the chi-square statistic. Furthermore, a two-layer ensemble method that combines the advantages of dynamic ensemble selection and stacking is proposed to improve the classification performance of the proposed multi-stage ensemble model. Finally, four standardized datasets are used to evaluate the performance of the proposed ensemble model using six evaluation metrics. The experimental results confirm that the proposed ensemble model is effective in improving classification performance and is superior to other benchmark models.


2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Tianjun Li ◽  
Long Chen ◽  
Min Gan

Abstract Background Mass spectra are usually acquired from the Liquid Chromatography-Mass Spectrometry (LC-MS) analysis for isotope labeled proteomics experiments. In such experiments, the mass profiles of labeled (heavy) and unlabeled (light) peptide pairs are represented by isotope clusters (2D or 3D) that provide valuable information about the studied biological samples in different conditions. The core task of quality control in quantitative LC-MS experiment is to filter out low-quality peptides with questionable profiles. The commonly used methods for this problem are the classification approaches. However, the data imbalance problems in previous control methods are often ignored or mishandled. In this study, we introduced a quality control framework based on the extreme gradient boosting machine (XGBoost), and carefully addressed the imbalanced data problem in this framework. Results In the XGBoost based framework, we suggest the application of the Synthetic minority over-sampling technique (SMOTE) to re-balance data and use the balanced data to train the boosted trees as the classifier. Then the classifier is applied to other data for the peptide quality assessment. Experimental results show that our proposed framework increases the reliability of peptide heavy-light ratio estimation significantly. Conclusions Our results indicate that this framework is a powerful method for the peptide quality assessment. For the feature extraction part, the extracted ion chromatogram (XIC) based features contribute to the peptide quality assessment. To solve the imbalanced data problem, SMOTE brings a much better classification performance. Finally, the XGBoost is capable for the peptide quality control. Overall, our proposed framework provides reliable results for the further proteomics studies.


2020 ◽  
Vol 34 (04) ◽  
pp. 6680-6687
Author(s):  
Jian Yin ◽  
Chunjing Gan ◽  
Kaiqi Zhao ◽  
Xuan Lin ◽  
Zhe Quan ◽  
...  

Recently, imbalanced data classification has received much attention due to its wide applications. In the literature, existing researches have attempted to improve the classification performance by considering various factors such as the imbalanced distribution, cost-sensitive learning, data space improvement, and ensemble learning. Nevertheless, most of the existing methods focus on only part of these main aspects/factors. In this work, we propose a novel imbalanced data classification model that considers all these main aspects. To evaluate the performance of our proposed model, we have conducted experiments based on 14 public datasets. The results show that our model outperforms the state-of-the-art methods in terms of recall, G-mean, F-measure and AUC.


2019 ◽  
Vol 9 (20) ◽  
pp. 4216 ◽  
Author(s):  
Zhen Chen ◽  
Xiaoyan Han ◽  
Chengwei Fan ◽  
Zirun He ◽  
Xueneng Su ◽  
...  

In recent years, machine learning methods have shown the great potential for real-time transient stability status prediction (TSSP) application. However, most existing studies overlook the imbalanced data problem in TSSP. To address this issue, a novel data segmentation-based ensemble classification (DSEC) method for TSSP is proposed in this paper. Firstly, the effects of the imbalanced data problem on the decision boundary and classification performance of TSSP are investigated in detail. Then, a three-step DSEC method is presented. In the first step, the data segmentation strategy is utilized for dividing the stable samples into multiple non-overlapping stable subsets, ensuring that the samples in each stable subset are not more than the unstable ones, then each stable subset is combined with the unstable set into a training subset. For the second step, an AdaBoost classifier is built based on each training subset. In the final step, decision values from each AdaBoost classifier are aggregated for determining the transient stability status. The experiments are conducted on the Northeast Power Coordinating Council 140-bus system and the simulation results indicate that the proposed approach can significantly improve the classification performance of TSSP with imbalanced data.


2007 ◽  
Vol 17 (05) ◽  
pp. 369-381 ◽  
Author(s):  
BRITTA MERSCH ◽  
TOBIAS GLASMACHERS ◽  
PETER MEINICKE ◽  
CHRISTIAN IGEL

Oligo kernels for biological sequence classification have a high discriminative power. A new parameterization for the K-mer oligo kernel is presented, where all oligomers of length K are weighted individually. The task specific choice of these parameters increases the classification performance and reveals information about discriminative features. For adapting the multiple kernel parameters based on cross-validation the covariance matrix adaptation evolution strategy is proposed. It is applied to optimize the trimer oligo kernels for the detection of bacterial gene starts. The resulting kernels lead to higher classification rates, and the adapted parameters reveal the importance of particular triplets for classification, for example of those occurring in the Shine-Dalgarno Sequence.


2015 ◽  
Vol 2015 ◽  
pp. 1-8
Author(s):  
Yonghua Xie ◽  
Yurong Liu ◽  
Qingqiu Fu

In view of the SVM classification for the imbalanced sand-dust storm data sets, this paper proposes a hybrid self-adaptive sampling method named SRU-AIBSMOTE algorithm. This method can adaptively adjust neighboring selection strategy based on the internal distribution of sample sets. It produces virtual minority class instances through randomized interpolation in the spherical space which consists of minority class instances and their neighbors. The random undersampling is also applied to undersample the majority class instances for removal of redundant data in the sample sets. The comparative experimental results on the real data sets from Yanchi and Tongxin districts in Ningxia of China show that the SRU-AIBSMOTE method can obtain better classification performance than some traditional classification methods.


Algorithms ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 54
Author(s):  
Chen Fu ◽  
Jianhua Yang

The problem of classification for imbalanced datasets is frequently encountered in practical applications. The data to be classified in this problem are skewed, i.e., the samples of one class (the minority class) are much less than those of other classes (the majority class). When dealing with imbalanced datasets, most classifiers encounter a common limitation, that is, they often obtain better classification performances on the majority classes than those on the minority class. To alleviate the limitation, in this study, a fuzzy rule-based modeling approach using information granules is proposed. Information granules, as some entities derived and abstracted from data, can be used to describe and capture the characteristics (distribution and structure) of data from both majority and minority classes. Since the geometric characteristics of information granules depend on the distance measures used in the granulation process, the main idea of this study is to construct information granules on each class of imbalanced data using Minkowski distance measures and then to establish the classification models by using “If-Then” rules. The experimental results involving synthetic and publicly available datasets reflect that the proposed Minkowski distance-based method can produce information granules with a series of geometric shapes and construct granular models with satisfying classification performance for imbalanced datasets.


Sign in / Sign up

Export Citation Format

Share Document