Inflight Aerodynamic Parameter Estimation for Fixed Wing Unmanned Aerial Vehicle

Author(s):  
R. Jaganraj ◽  
R. Velu

This paper presents the frame work for aerodynamic parameter estimation for small fixed wing unmanned aerial vehicle (UAV). The recent development in autopilot hardware for small UAV enables the in-flight data collection of flight characteristics. A methodology is outlined to collect, process and arrive at a conclusion from the in-flight data using commercial flight controller of under 2kg (micro) fixed wing aircraft, ‘VAF01’ for which a Fault Detection and Identification (FDI) system is under development. As a part of the FDI, the linear longitudinal (3 DOF) aerodynamic model is developed and in-flight experimental data is used to estimate the longitudinal aerodynamic parameters. The Flight Path Reconstruction is completed with the acquired parameters from in-flight experiments and results are discussed for further utilization of them.

2018 ◽  
Vol 122 (1252) ◽  
pp. 889-912
Author(s):  
Subrahmanyam Saderla ◽  
Dhayalan Rajaram ◽  
A. K. Ghosh

ABSTRACTThe current research paper describes the lateral-directional parameter estimation from flight data of a miniature Unmanned Aerial Vehicle (UAV) using Maximum Likelihood (ML), and Neural-Gauss-Newton (NGN) methods. An unmanned configuration with a cropped delta planform and thin rectangular cross-section has been designed, fabricated and instrumented. Exhaustive full-scale wind-tunnel tests were performed on the UAV to extract the form of aerodynamic model that has to be postulated a priori for parameter estimation. Rigorous flight tests have been performed to acquire the flight data for several prescribed manoeuvres. Four sets of compatible flight data have been used to carry out parameter estimation using classical ML and neural-network-based NGN methods. It is observed that the estimated parameters are consistent and the lower values of the Cramer-Rao bound for the corresponding estimates have shown significant confidence in the obtained parameters. Furthermore, to validate the aerodynamic model used and to enhance the confidence in the estimated parameters, a proof of match exercise has been carried out.


2019 ◽  
Vol 123 (1269) ◽  
pp. 1807-1839
Author(s):  
S. Saderla ◽  
R. Dhayalan ◽  
K. Singh ◽  
N. Kumar ◽  
A. K. Ghosh

ABSTRACTIn this paper, longitudinal and lateral-directional aerodynamic characterisation of the Cropped Delta Reflex Wing (CDRW) configuration–based unmanned aerial vehicle is carried out by means of full-scale static wind-tunnel tests followed by full-scale flight testing. A predecided set of longitudinal and lateral/directional manoeuvres is performed to acquire the respective flight data, using a dedicated onboard flight data acquisition system. The compatibility of the acquired dynamics is quantified, in terms of scale factors and biases of the measured variables, using Kinematic consistency check. Maximum likelihood (ML), least squares and newly emerging neural Gauss–Newton (NGN) methods were implemented for a wing-alone delta configuration, mainly to capture the dynamic derivatives for both longitudinal and lateral directional cases. Estimated damping and weak dynamic derivatives, which are in general challenging to capture for a wing alone configuration, are consistent using ML and NGN methods. Validation of the estimated parameters with aerodynamic model is performed by proof-of-match exercise and are presented therein.


2015 ◽  
Vol 75 (8) ◽  
Author(s):  
Wirachman Wisnoe ◽  
Rizal E.M. Nasir ◽  
Ramzyzan Ramly ◽  
Wahyu Kuntjoro ◽  
Firdaus Muhammad

In this paper, a study of aerodynamic characteristics of UiTM's Blended-Wing-Body Unmanned Aerial Vehicle (BWB-UAV) Baseline-II in terms of side force, drag force and yawing moment coefficients are presented through Computational Fluid Dynamics (CFD) simulation. A vertical rudder is added to the aircraft at the rear centre part of the fuselage as yawing control surface. The study consists of varying the side slip angles for various rudder deflection angles and to plot the results for each aerodynamic parameter. The comparison with other yawing control surface for the same aircraft obtained previously are also presented. For validation purpose, the lift and drag coefficients are compared with the results obtained from wind tunnel experiments. 


2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Matthew B. Rhudy ◽  
Yu Gu ◽  
Haiyang Chao ◽  
Jason N. Gross

This paper offers a set of novel navigation techniques that rely on the use of inertial sensors and wide-field optical flow information. The aircraft ground velocity and attitude states are estimated with an Unscented Information Filter (UIF) and are evaluated with respect to two sets of experimental flight data collected from an Unmanned Aerial Vehicle (UAV). Two different formulations are proposed, a full state formulation including velocity and attitude and a simplified formulation which assumes that the lateral and vertical velocity of the aircraft are negligible. An additional state is also considered within each formulation to recover the image distance which can be measured using a laser rangefinder. The results demonstrate that the full state formulation is able to estimate the aircraft ground velocity to within 1.3 m/s of a GPS receiver solution used as reference “truth” and regulate attitude angles within 1.4 degrees standard deviation of error for both sets of flight data.


2021 ◽  
Vol 2 (Oktober) ◽  
pp. 47-55
Author(s):  
Luthfan Herlambang ◽  
Eko Kuncoro ◽  
Muhamat Maariful Huda

Abstract: UAV or unmanned aerial vehicle is an air vehicle or what we often call an airplane that is controlled without a crew but controlled by a pilot remotely using a remote control. This study uses quantitative experiment methods because in this study it must be carried out when the UAV is flying using the autonomous waypoint method. Running the UAV with the autonomous waypoint method, we can use the Mission Planner software. First, we have to install the application on the mission planner and install pixhawk on the UAV which will act as the UAV brain that will receive and execute flight commands that will be sent by the mission planner later. The mission planner can also directly display flight data such as UAV altitude, UAV speed, UAV location, then the mission planner can also store flight data run by the UAV. The Autonomous waypoint method has been widely used in the military field, such as to carry out attacks on the enemy, reconnaissance, and patrol in an area quickly, and can also reduce casualties during combat operations.


Sign in / Sign up

Export Citation Format

Share Document