3D tools for the Robust Design Optimization of an Autonomous Underwater Vehicle

Author(s):  
Andrey Kirsanov ◽  
Sreenatha G. Anavatti ◽  
Tapabrata Ray
Author(s):  
Mohsen Bidoki ◽  
Mehdi Mortazavi ◽  
Mehdi Sabzehparvar

The design process of an autonomous underwater vehicle requires mathematical model of subsystems or disciplines such as guidance and control, payload, hydrodynamic, propulsion, structure, trajectory and performance and their interactions. In early phases of design, an autonomous underwater vehicle is often encountered with a high degree of uncertainty in the design variables and parameters of system. These uncertainties present challenges to the design process and have a direct effect on the autonomous underwater vehicle performance. Multidisciplinary design optimization is an approach to find both optimum and feasible design, and robust design is an approach to make the system performance insensitive to variations of design variables and parameters. It is significant to integrate the robust design and the multidisciplinary design optimization for designing complex engineering systems in optimal, feasible and robust senses. In this article, we present an improved multidisciplinary design optimization methodology for conceptual design of an autonomous underwater vehicle in both engineering and tactic aspects under uncertainty. In this methodology, uncertain multidisciplinary feasible is introduced as uncertain multidisciplinary design optimization framework. The results of this research illustrate that the new proposed robust multidisciplinary design optimization framework can carefully set a robust design for an autonomous underwater vehicle with coupled uncertain disciplines.


Author(s):  
Souvik Chakraborty ◽  
Tanmoy Chatterjee ◽  
Rajib Chowdhury ◽  
Sondipon Adhikari

Optimization for crashworthiness is of vast importance in automobile industry. Recent advancement in computational prowess has enabled researchers and design engineers to address vehicle crashworthiness, resulting in reduction of cost and time for new product development. However, a deterministic optimum design often resides at the boundary of failure domain, leaving little or no room for modeling imperfections, parameter uncertainties, and/or human error. In this study, an operational model-based robust design optimization (RDO) scheme has been developed for designing crashworthiness of vehicle against side impact. Within this framework, differential evolution algorithm (DEA) has been coupled with polynomial correlated function expansion (PCFE). An adaptive framework for determining the optimum basis order in PCFE has also been presented. It is argued that the coupled DEA–PCFE is more efficient and accurate, as compared to conventional techniques. For RDO of vehicle against side impact, minimization of the weight and lower rib deflection of the vehicle are considered to be the primary design objectives. Case studies by providing various emphases on the two objectives have also been performed. For all the cases, DEA–PCFE is found to yield highly accurate results.


Sign in / Sign up

Export Citation Format

Share Document