Forward Search Approach using Power Search Algorithm (FSA-PSA) to solve Dynamic Economic Load Dispatch problems

Author(s):  
A. Prakash ◽  
R. Anand ◽  
B. Mouli Chandra
Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 857
Author(s):  
Jahedul Islam ◽  
Md Shokor A. Rahaman ◽  
Pandian M. Vasant ◽  
Berihun Mamo Negash ◽  
Ahshanul Hoqe ◽  
...  

Well placement optimization is considered a non-convex and highly multimodal optimization problem. In this article, a modified crow search algorithm is proposed to tackle the well placement optimization problem. This article proposes modifications based on local search and niching techniques in the crow search algorithm (CSA). At first, the suggested approach is verified by experimenting with the benchmark functions. For test functions, the results of the proposed approach demonstrated a higher convergence rate and a better solution. Again, the performance of the proposed technique is evaluated with well placement optimization problem and compared with particle swarm optimization (PSO), the Gravitational Search Algorithm (GSA), and the Crow search algorithm (CSA). The outcomes of the study revealed that the niching crow search algorithm is the most efficient and effective compared to the other techniques.


2021 ◽  
Vol 11 (7) ◽  
pp. 2962
Author(s):  
Mohamadreza Afrasiabi ◽  
Christof Lüthi ◽  
Markus Bambach ◽  
Konrad Wegener

This paper presents an efficient mesoscale simulation of a Laser Powder Bed Fusion (LPBF) process using the Smoothed Particle Hydrodynamics (SPH) method. The efficiency lies in reducing the computational effort via spatial adaptivity, for which a dynamic particle refinement pattern with an optimized neighbor-search algorithm is used. The melt pool dynamics is modeled by resolving the thermal, mechanical, and material fields in a single laser track application. After validating the solver by two benchmark tests where analytical and experimental data are available, we simulate a single-track LPBF process by adopting SPH in multi resolutions. The LPBF simulation results show that the proposed adaptive refinement with and without an optimized neighbor-search approach saves almost 50% and 35% of the SPH calculation time, respectively. This achievement enables several opportunities for parametric studies and running high-resolution models with less computational effort.


2020 ◽  
Vol 9 (3) ◽  
pp. 24-38
Author(s):  
Cuong Dinh Tran ◽  
Tam Thanh Dao ◽  
Ve Song Vo

The cuckoo search algorithm (CSA), a new meta-heuristic algorithm based on natural phenomenon of the cuckoo species and Lévy flights random walk has been widely and successfully applied to several optimization problems so far. In the article, two modified versions of CSA, where new solutions are generated using two distributions including Gaussian and Cauchy distributions in addition to imposing bound by best solutions mechanisms are proposed for solving economic load dispatch (ELD) problems with multiple fuel options. The advantages of CSA with Gaussian distribution (CSA-Gauss) and CSA with Cauchy distribution (CSA-Cauchy) over CSA with Lévy distribution and other meta-heuristic are fewer parameters. The proposed CSA methods are tested on two systems with several load cases and obtained results are compared to other methods. The result comparisons have shown that the proposed methods are highly effective for solving ELD problem with multiple fuel options and/nor valve point effect.


Author(s):  
Giglia Gómez-Villouta ◽  
Jean-Philippe Hamiez ◽  
Jin-Kao Hao

This paper discusses a particular “packing” problem, namely the two dimensional strip packing problem, where a finite set of objects have to be located in a strip of fixed width and infinite height. The variant studied considers regular items, rectangular to be precise, that must be packed without overlap, not allowing rotations. The objective is to minimize the height of the resulting packing. In this regard, the authors present a local search algorithm based on the well-known tabu search metaheuristic. Two important components of the presented tabu search strategy are reinforced in attempting to include problem knowledge. The fitness function incorporates a measure related to the empty spaces, while the diversification relies on a set of historically “frozen” objects. The resulting reinforced tabu search approach is evaluated on a set of well-known hard benchmark instances and compared with state-of-the-art algorithms.


2020 ◽  
Vol 14 (6) ◽  
pp. 1351-1380
Author(s):  
Sakthivel V.P. ◽  
Suman M. ◽  
Sathya P.D.

Purpose Economic load dispatch (ELD) is one of the crucial optimization problems in power system planning and operation. The ELD problem with valve point loading (VPL) and multi-fuel options (MFO) is defined as a non-smooth and non-convex optimization problem with equality and inequality constraints, which obliges an efficient heuristic strategy to be addressed. The purpose of this study is to present a new and powerful heuristic optimization technique (HOT) named as squirrel search algorithm (SSA) to solve non-convex ELD problems of large-scale power plants. Design/methodology/approach The suggested SSA approach is aimed to minimize the total fuel cost consumption of power plant considering their generation values as decision variables while satisfying the problem constraints. It confers a solution to the ELD issue by anchoring with foraging behavior of squirrels based on the dynamic jumping and gliding strategies. Furthermore, a heuristic approach and selection rules are used in SSA to handle the constraints appropriately. Findings Empirical results authenticate the superior performance of SSA technique by validating on four different large-scale systems. Comparing SSA with other HOTs, numerical results depict its proficiencies with high-qualitative solution and by its excellent computational efficiency to solve the ELD problems with non-smooth fuel cost function addressing the VPL and MFO. Moreover, the non-parametric tests prove the robustness and efficacy of the suggested SSA and demonstrate that it can be used as a competent optimizer for solving the real-world large-scale non-convex ELD problems. Practical implications This study has compared various HOTs to determine optimal generation scheduling for large-scale ELD problems. Consequently, its comparative analysis will be beneficial to power engineers for accurate generation planning. Originality/value To the best of the authors’ knowledge, this manuscript is the first research work of using SSA approach for solving ELD problems. Consequently, the solution to this problem configures the key contribution of this paper.


2013 ◽  
Vol 21 (1) ◽  
pp. 179-196 ◽  
Author(s):  
Arnaud Liefooghe ◽  
Luís Paquete ◽  
José Rui Figueira

In this article, a local search approach is proposed for three variants of the bi-objective binary knapsack problem, with the aim of maximizing the total profit and minimizing the total weight. First, an experimental study on a given structural property of connectedness of the efficient set is conducted. Based on this property, a local search algorithm is proposed and its performance is compared to exact algorithms in terms of runtime and quality metrics. The experimental results indicate that this simple local search algorithm is able to find a representative set of optimal solutions in most of the cases, and in much less time than exact algorithms.


Sign in / Sign up

Export Citation Format

Share Document