Design and performance measurement of an in-body implantable miniaturized Slot Dipole rectangular patch antenna for biomedical applications

Author(s):  
Nasim Al Islam ◽  
Aleef Tajwar Abrar ◽  
Ussash Arafat ◽  
Akib Jayed Islam ◽  
Rashedul Hoque
2021 ◽  
Author(s):  
Majedeh Seydi ◽  
Mohammad Sajjad Bayati

Abstract A rectangular meandering-microstrip patch antenna (RM-MPA) with shorting pin for implant antenna and biomedical applications at industrial, scientific, and medical (ISM) band is proposed. The rectangular patch has length of l =14 mm and width of w =9.4 mm. The substrate and superstrate are made of Rogers 3210 with dielectric constant equals 10.2. The RMMPA is placed between the substrate and superstrate dielectric layers whose same thickness equals 0.635 mm. The proposed antenna is fed by a 50-ohm coaxial probe, at the centre of the length and edge of the width of the patch. The input impedance of patch antenna varies with the patch geometry. Thus, the geometry of the patch changed to achieve impedance matching at ISM band. The rectangular patch divided to three sections along width for meandering. The resonance frequency is tuned by meandering each section. The proposed antenna is simulated in free space and skin phantom. Proposed antenna has efficiency of 90%, bandwidth 1.02%. Both radiation pattern and SAR are evaluated which SAR level is below the safety and satisfies SAR standards. Finally, the antenna is tested in minced meat and tissue liquid.


Author(s):  
Khamis Hassan Ali ◽  
Kamilia Kamardin ◽  
Yoshihide Yamada ◽  
Izni Husna Idris ◽  
Muhaimin Mokhtar ◽  
...  

2017 ◽  
Vol 16 (1) ◽  
pp. 61-68
Author(s):  
Nasim Al Islam ◽  
Farhadur Arifin

An implantable PIFA (Planar Inverted F Antenna) antenna for biomedical applications is proposed in this study. The main notability of this design refers to its subtle dimension, flexibility and subordinate thickness that makes it perfectly suitable for implementing inside human or animal tissues for Wireless Body Area Networks (WBAN). The antenna is aimed to operate in the Industrial, Scientific and Medical (ISM) band (2.4–2.4835 GHz). The thickness of this antenna is only 0.735 mm, which implies that this antenna is suitable to perform under bent conditions. The antenna offers a compact design with a dimension of 9.48 mm × 7.8 mm × .735 mm (54.348 mm3). Copper and Rogers R03010 are chosen as the patch material and substrate material accordingly. The antenna is encapsulated inside biocompatible material Rogers R03010 for safety concern inside skin or muscle tissues. Several types of analysis and performance measurement of this antenna have been done by using CST Microwave studio in both planar and bent conditions by maintaining the electrical properties of human skin tissues. Specific Absorption Rate (SAR) and thermal loss are evaluated to comply with the antenna safety issues. For proving biocompatibility and versatility of this antenna, performance analysis by changing different patch materials and substrate materials have been done after putting the antenna inside different human tissue models. Finally, the antenna is fabricated on to a FR4 substrate and its performance is measured using Agilent Technologies E5071C Network Analyzer.


2013 ◽  
Vol 6 (1) ◽  
pp. 101-107
Author(s):  
Srinivasan Ashok Kumar ◽  
Thangavelu Shanmuganantham

Implantable antennas have recently been receiving substantial attention for medical diagnosis and treatment. In this paper, a coplanar waveguide-fed monopole antenna for industrial, scientific, and medical (ISM) band biomedical applications is proposed. The antenna has a simple structure is placed on human tissues such as muscle, fat, and skin. The designed antenna is made compatible for implantation by embedding it in an FR4 substrate. The proposed antenna is simulated using the method of moment's software IE3D by assuming the predetermined dielectric constant for the human muscle tissue, fat, and skin. The antenna operates in the frequency of ISM bands, 2.4–2.48 GHz. Simulated and measured gains attain −7.7 and −8 dBi in the frequency of 2.45 GHz. The radiation pattern, return loss, current distribution, and gain of these antennas were examined and characterized.


Sign in / Sign up

Export Citation Format

Share Document