A Hot Decomposition Procedure: Operational Monolith System to Microservices

Author(s):  
Nikolay Ivanov ◽  
Antoniya Tasheva
2002 ◽  
Vol 37 (3) ◽  
pp. 187-199 ◽  
Author(s):  
H. J Kim ◽  
J. S Kim ◽  
M. E Walter ◽  
J. K Lee

Intumescent mat materials in catalytic converters undergo chemical reactions that lead to material property changes and volume expansion during heating processes. Dead weight (load control) and displacement control compression experiments have been performed to explore static and transient stress-strain responses. The apparatus and methods for both experiments are described. The experimental results together with a strain decomposition procedure yield a master curve that can be employed for constitutive modelling.


Energies ◽  
2020 ◽  
Vol 13 (24) ◽  
pp. 6744
Author(s):  
Yang Yang ◽  
Zhijian Yu

The recirculation zone and the swirl flame behavior can be influenced by the burner exit shape, and few studies have been made into this structure. Large eddy simulation was carried out on 16 cases to distinguish critical geometry factors. The time series of the heat release rate were decomposed using seasonal-trend decomposition procedure to exclude the effect of short physical time. Dynamic mode decomposition (DMD) was performed to separate flame structures. The frequency characteristics extracted from the DMD modes were compared with those from the flame transfer functions. Results show that the flame cases can be categorized into three types, all of which are controlled by a specific geometric parameter. Except one type of flame, they show nonstationary behavior by the Kwiatkowski–Phillips–Schmidt–Shin test. The frequency bands corresponding to the coherent structures are identified. The flame transfer function indicates that the flame can respond to external excitation in the frequency range 100–300 Hz. The DMD modes capture the detailed flame structures. The higher frequency bands can be interpolated as the streamwise vortices and shedding vortices. The DMD modes, which correspond to the bands of flame transfer functions, can be estimated as streamwise vortices at the edges.


2010 ◽  
Vol 8 (3) ◽  
pp. 594-601 ◽  
Author(s):  
Henryk Matusiewicz ◽  
Ewa Stanisz

AbstractSample preparation methods for non-separation cold vapor atomic absorption spectrometry (CVAAS) sequential inorganic mercury speciation in biological certified reference materials (CRMs) were investigated. The methylmercury concentration was calculated as the difference between total and inorganic mercury. Microwave-assisted decomposition method, and three ultrasonic extraction procedures based on acid leaching with HCl and HCOOH and solubilization with TMAH were employed as sample preparation methods. The replacement of a sample decomposition procedure by extraction prior to analysis by CVAAS, as well as the aspect of speciation analysis is discussed. The limits of detection in the sample were determined as 50 and 10 ng L−1 for inorganic and total mercury, which corresponds to absolute detection limits of 40 and 8 ng g−1 for inorganic and total mercury, respectively. The results were in good agreement with the 95% confidence level t-test of the certified values for total and inorganic mercury in the reference materials investigated. From the analysis of the CRMs, it was evident that the difference between the total and inorganic mercury concentrations agrees with the methylmercury concentration. The relative standard deviation was better than 11% for most of the samples.


2022 ◽  
Vol 2022 (1) ◽  
Author(s):  
Tianyi Li ◽  
Ma-Ke Yuan ◽  
Yang Zhou

Abstract Defect extremal surface is defined by extremizing the Ryu-Takayanagi formula corrected by the quantum defect theory. This is interesting when the AdS bulk contains a defect brane (or string). We introduce a defect extremal surface formula for reflected entropy, which is a mixed state generalization of entanglement entropy measure. Based on a decomposition procedure of an AdS bulk with a brane, we demonstrate the equivalence between defect extremal surface formula and island formula for reflected entropy in AdS3/BCFT2. We also compute the evolution of reflected entropy in evaporating black hole model and find that defect extremal surface formula agrees with island formula.


2021 ◽  
pp. 0734242X2110614
Author(s):  
AKM Mohsin ◽  
Lei Hongzhen ◽  
Mohammed Masum Iqbal ◽  
Zahir Rayhan Salim ◽  
Alamgir Hossain ◽  
...  

Forecasting the scale of e-waste recycling is the basis for the government to formulate the development plan of circular economy and relevant subsidy policies and enterprises to evaluate resource recovery and optimise production capacity. In this article, the CH-X12 /STL-X framework for e-waste recycling scale prediction is proposed based on the idea of ‘decomposition-integration’, considering that the seasonal data characteristics of quarterly e-waste recycling scale data may lead to large forecasting errors and inconsistent forecasting results of a traditional single model. First, the seasonal data characteristics of the time series of e-waste recovery scale are identified based on Canova–Hansen (CH) test, and then the time series suitable for seasonal decomposition is extracted with X12 or seasonal-trend decomposition procedure based on loess (STL) model for seasonal components. Then, the Holt–Winters model was used to predict the seasonal component, and the support vector regression (SVR) model was used to predict the other components. Finally, the linear sum of the prediction results of each component is used to obtain the final prediction result. The empirical results show that the proposed CH-X12/STL-X forecasting framework can better meet the modelling requirements for time-series forecasting driven by different seasonal data characteristics and has better and more stable forecasting performance than traditional single models (Holt–Winters model, seasonal autoregressive integrated moving average model and SVR model).


Author(s):  
H. K. Das

This paper develops a decompose procedure for finding the optimal solution of convex and concave Quadratic Programming (QP) problems together with general Non-linear Programming (NLP) problems. The paper also develops a sophisticated computer technique corresponding to the author's algorithm using programming language MATHEMATICA. As for auxiliary by making comparison, the author introduces a computer-oriented technique of the traditional Karush-Kuhn-Tucker (KKT) method and Lagrange method for solving NLP problems. He then modify the Sander's algorithm and develop a new computational technique to evaluate the performance of the Sander's algorithm for solving NLP problems. The author observe that the technique avoids some certain numerical difficulties in NLP and QP. He illustrates a number of numerical examples to demonstrate his method and the modified algorithm.


Sign in / Sign up

Export Citation Format

Share Document