A novel voltage regulation control method of distribution network based on switched affine model

Author(s):  
Weiwei Li ◽  
Xingong Cheng ◽  
Xiju Zong
1998 ◽  
Vol 118 (9) ◽  
pp. 998-1005 ◽  
Author(s):  
Hiroyuki Fudo ◽  
Takamu Genji ◽  
Masaru Yukawa ◽  
Seiya Abe ◽  
Masao Shimamoto ◽  
...  

Author(s):  
Yu Yan ◽  
Wei Jiang ◽  
Dehua Zou ◽  
Wusheng Quan ◽  
Hong Jun Li ◽  
...  

Purpose In the long-term network operation, the power distribution network will be subjected to the effects of ultra-high voltage, strong electromagnetic interference and harsh natural environment on the power system, which will lead to the occurrence of different faults in the distribution network and directly affect the normal operation of the power grid. Design/methodology/approach The purpose of this study is to solve the problems of labor intensity, high risk and low efficiency of distribution network manual maintenance operation, this paper proposed a new configuration of the live working robot for distribution network maintenance, the robot is equipped with dual working arms through the mobile platform, which can realize the coordination movement, the autonomous reorganization and replacement of the end tools, respectively, so as the robot power distribution maintenance function such as stripping, trimming, wiring and the operation control problem of the distribution network-robot with small arms and in small operation space can be realized. Findings To effective elimination or reduce the adverse effects of the internal forces in the closed chain between the working object and manipulator under the typical task of the 10 kV distribution network, this paper has established the robot coordinated control dynamics model in the closed-chain between the dual-working object and proposed the dynamic distribution method of closed-chain internal force and the effectiveness has been proved by simulation experiments and 10 kV field operation. Originality/value The force-position hybrid control can realize the mutual compensation of force and position so as to effectively reduce the internal force in the closed chain. Finally, the engineering practicality of the method is verified by field operation experiment, the effective implementation of this control method greatly improves the robot working efficiency and the operation reliability, the promotion and application of the control method have great theoretical and practical value and maintenance management system, so as to achieve automation of electric.


Energies ◽  
2019 ◽  
Vol 12 (11) ◽  
pp. 2146
Author(s):  
HwaPyeong Park ◽  
Mina Kim ◽  
HakSun Kim ◽  
JeeHoon Jung

A dual-output LLC resonant converter using pulse frequency modulation (PFM) and asymmetrical pulse width modulation (APWM) can achieve tight output voltage regulation, high power density, and high cost-effectiveness. However, an improper resonant tank design cannot achieve tight cross regulation of the dual-output channels at the worst-case load conditions. In addition, proper magnetizing inductance is required to achieve zero voltage switching (ZVS) of the power MOSFETs in the LLC resonant converter. In this paper, voltage gain of modulation methods and steady state operations are analyzed to implement the hybrid control method. In addition, the operation of the hybrid control algorithm is analyzed to achieve tight cross regulation performance. From this analysis, the design methodology of the resonant tank and the magnetizing inductance are proposed to compensate the output error of both outputs and to achieve ZVS over the entire load range. The cross regulation performance is verified with simulation and experimental results using a 190 W prototype converter.


2018 ◽  
Vol 7 (2.28) ◽  
pp. 362
Author(s):  
Raed A. Shalwala

One of the most important operational requirements for any electrical power network for both distribution and transmission level is voltage control. Many studies have been carried out to improve or develop new voltage control techniques to facilitate safe connection of distributed generation. In Saudi Arabia, due to environmental, economic and development perspectives, a wide integration of photovoltaic (PV) genera-tion in distribution network is expected in the near future. This development in the network may cause voltage regulation problems due to the interaction with the existing conventional control system. In a previous paper, a control system has been described using a fuzzy logic control to set the on-line tap changer for the primary substation. In this paper a new control system is proposed for controlling the power factor of individual PV invertors based on observed correlation between net active and reactive power at each connection. A fuzzy logic control has been designed to alter the power factor for the remote invertors from the secondary substation to keep the feeder voltage within the permissible limits. In order to confirm the validity of the proposed method, simulations are carried out for a realistic distribution network with real data for load and solar radiation. Results showing the performance of the new control method are presented and discussed.  


Sign in / Sign up

Export Citation Format

Share Document