Nonlinear temperature control of heat exchanger process using particle filter with interquartile range particle weights

Author(s):  
Kakeru Fujioka ◽  
Mingcong Deng
Author(s):  
Claudia Ruiz-Mercado ◽  
Arturo Pacheco-Vega ◽  
Kevin Peters

We develop a fuzzy rule based controller to perform on-line temperature control of a concentric-tubes heat exchanger facility. The rules were derived from dynamical values of the mass flow rates and fluid temperatures in the heat exchanger. The controller was embedded in a closed-loop single-input single-output system to control the outlet temperature of the cold fluid. The controller was constructed in two stages, the difference between them being the amount of information provided to the controller. To validate the fuzzy controller two sets of tests were carried out for maintaining a constant value of the outlet temperature under different perturbations. Results from this analysis demonstrate that the fuzzy-based controller is able to achieve control of the system, and that the information about the system provided to it is important in terms of accuracy and efficiency.


2020 ◽  
Vol 37 (4) ◽  
pp. 729-744 ◽  
Author(s):  
Carolina B. Carvalho ◽  
Esdras P. Carvalho ◽  
Mauro A. S. S. Ravagnani

2011 ◽  
Vol 32 (4) ◽  
pp. 17-32 ◽  
Author(s):  
Dawid Taler ◽  
Adam Sury

Inverse heat transfer problem in digital temperature control in plate fin and tube heat exchangersThe aim of the paper is a steady-state inverse heat transfer problem for plate-fin and tube heat exchangers. The objective of the process control is to adjust the number of fan revolutions per minute so that the water temperature at the heat exchanger outlet is equal to a preset value. Two control techniques were developed. The first is based on the presented mathematical model of the heat exchanger while the second is a digital proportional-integral-derivative (PID) control. The first procedure is very stable. The digital PID controller becomes unstable if the water volumetric flow rate changes significantly. The developed techniques were implemented in digital control system of the water exit temperature in a plate fin and tube heat exchanger. The measured exit temperature of the water was very close to the set value of the temperature if the first method was used. The experiments showed that the PID controller works also well but becomes frequently unstable.


Sign in / Sign up

Export Citation Format

Share Document