Comparison of Machine Learning Classifiers for Land Cover Changes using Google Earth Engine

Author(s):  
Sackdavong Mangkhaseum ◽  
Akitoshi Hanazawa
2021 ◽  
Vol 13 (8) ◽  
pp. 1433
Author(s):  
Shobitha Shetty ◽  
Prasun Kumar Gupta ◽  
Mariana Belgiu ◽  
S. K. Srivastav

Machine learning classifiers are being increasingly used nowadays for Land Use and Land Cover (LULC) mapping from remote sensing images. However, arriving at the right choice of classifier requires understanding the main factors influencing their performance. The present study investigated firstly the effect of training sampling design on the classification results obtained by Random Forest (RF) classifier and, secondly, it compared its performance with other machine learning classifiers for LULC mapping using multi-temporal satellite remote sensing data and the Google Earth Engine (GEE) platform. We evaluated the impact of three sampling methods, namely Stratified Equal Random Sampling (SRS(Eq)), Stratified Proportional Random Sampling (SRS(Prop)), and Stratified Systematic Sampling (SSS) upon the classification results obtained by the RF trained LULC model. Our results showed that the SRS(Prop) method favors major classes while achieving good overall accuracy. The SRS(Eq) method provides good class-level accuracies, even for minority classes, whereas the SSS method performs well for areas with large intra-class variability. Toward evaluating the performance of machine learning classifiers, RF outperformed Classification and Regression Trees (CART), Support Vector Machine (SVM), and Relevance Vector Machine (RVM) with a >95% confidence level. The performance of CART and SVM classifiers were found to be similar. RVM achieved good classification results with a limited number of training samples.


2020 ◽  
Author(s):  
Laura Bindereif ◽  
Tobias Rentschler ◽  
Martin Batelheim ◽  
Marta Díaz-Zorita Bonilla ◽  
Philipp Gries ◽  
...  

<p>Land cover information plays an essential role for resource development, environmental monitoring and protection. Amongst other natural resources, soils and soil properties are strongly affected by land cover and land cover change, which can lead to soil degradation. Remote sensing techniques are very suitable for spatio-temporal mapping of land cover mapping and change detection. With remote sensing programs vast data archives were established. Machine learning applications provide appropriate algorithms to analyse such amounts of data efficiently and with accurate results. However, machine learning methods require specific sampling techniques and are usually made for balanced datasets with an even training sample frequency. Though, most real-world datasets are imbalanced and methods to reduce the imbalance of datasets with synthetic sampling are required. Synthetic sampling methods increase the number of samples in the minority class and/or decrease the number in the majority class to achieve higher model accuracy. The Synthetic Minority Over-Sampling Technique (SMOTE) is a method to generate synthetic samples and balance the dataset used in many machine learning applications. In the middle Guadalquivir basin, Andalusia, Spain, we used random forests with Landsat images from 1984 to 2018 as covariates to map the land cover change with the Google Earth Engine. The sampling design was based on stratified random sampling according to the CORINE land cover classification of 2012. The land cover classes in our study were arable land, permanent crops (plantations), pastures/grassland, forest and shrub. Artificial surfaces and water bodies were excluded from modelling. However, the number of the 130 training samples was imbalanced. The classes pasture (7 samples) and shrub (13 samples) show a lower number than the other classes (48, 47 and 16 samples). This led to misclassifications and negatively affected the classification accuracy. Therefore, we applied SMOTE to increase the number of samples and the classification accuracy of the model. Preliminary results are promising and show an increase of the classification accuracy, especially the accuracy of the previously underrepresented classes pasture and shrub. This corresponds to the results of studies with other objectives which also see the use of synthetic sampling methods as an improvement for the performance of classification frameworks.</p>


2020 ◽  
Vol 4 (2) ◽  
pp. 390-395
Author(s):  
Trida Ridho Fariz ◽  
Ely Nurhidayati

Land cover information is essential data in the management of watersheds. The challenge in providing land cover information in the Kapuas watershed is the cloud cover and its significant area coverage, thus requiring a large image scene. The presence of a cloud-based spatial data processing platform that is Google Earth Engine (GEE) can be answered these challenges. Therefore this study aims to map land cover in the Kapuas watershed using machine learning-based classification on GEE. The process of mapping land cover in the Kapuas watershed requires about ten scenes of Landsat 8 satellite imagery. The selected year is 2019, with mapped land cover classes consisting of bodies of water, vegetation cover, open land, and built-up area. Machine learning that tested included CART, Random Forest, GMO Max Entropy, SVM Voting, and SVM Margin. The results of this study indicate that the best machine learning in mapping land cover in the Kapuas watershed is GMO Max Entropy, then CART. This research still has many limitations, especially mapped land cover classes. So that research needs to be developed with more detailed land cover classes, more diverse and multi-time input data.


Sign in / Sign up

Export Citation Format

Share Document