Anti-push Method of Biped Robot Based on Motion Capture Point and Reinforcement Learning

Author(s):  
Song Wang ◽  
Songhao Piao ◽  
Xiaokun Leng ◽  
Lin Chang ◽  
Zhicheng He
2019 ◽  
Vol 9 (3) ◽  
pp. 502 ◽  
Author(s):  
Cristyan Gil ◽  
Hiram Calvo ◽  
Humberto Sossa

Programming robots for performing different activities requires calculating sequences of values of their joints by taking into account many factors, such as stability and efficiency, at the same time. Particularly for walking, state of the art techniques to approximate these sequences are based on reinforcement learning (RL). In this work we propose a multi-level system, where the same RL method is used first to learn the configuration of robot joints (poses) that allow it to stand with stability, and then in the second level, we find the sequence of poses that let it reach the furthest distance in the shortest time, while avoiding falling down and keeping a straight path. In order to evaluate this, we focus on measuring the time it takes for the robot to travel a certain distance. To our knowledge, this is the first work focusing both on speed and precision of the trajectory at the same time. We implement our model in a simulated environment using q-learning. We compare with the built-in walking modes of an NAO robot by improving normal-speed and enhancing robustness in fast-speed. The proposed model can be extended to other tasks and is independent of a particular robot model.


Sensors ◽  
2020 ◽  
Vol 20 (16) ◽  
pp. 4468
Author(s):  
Ao Xi ◽  
Chao Chen

In this work, we introduced a novel hybrid reinforcement learning scheme to balance a biped robot (NAO) on an oscillating platform, where the rotation of the platform is considered as the external disturbance to the robot. The platform had two degrees of freedom in rotation, pitch and roll. The state space comprised the position of center of pressure, and joint angles and joint velocities of two legs. The action space consisted of the joint angles of ankles, knees, and hips. By adding the inverse kinematics techniques, the dimension of action space was significantly reduced. Then, a model-based system estimator was employed during the offline training procedure to estimate the dynamics model of the system by using novel hierarchical Gaussian processes, and to provide initial control inputs, after which the reduced action space of each joint was obtained by minimizing the cost of reaching the desired stable state. Finally, a model-free optimizer based on DQN (λ) was introduced to fine tune the initial control inputs, where the optimal control inputs were obtained for each joint at any state. The proposed reinforcement learning not only successfully avoided the distribution mismatch problem, but also improved the sample efficiency. Simulation results showed that the proposed hybrid reinforcement learning mechanism enabled the NAO robot to balance on an oscillating platform with different frequencies and magnitudes. Both control performance and robustness were guaranteed during the experiments.


2015 ◽  
Vol 7 (6) ◽  
pp. 449-452 ◽  
Author(s):  
Ahmad Ghanbari ◽  
Yasaman Vaghei ◽  
Sayyed Mohammad Reza Sayyed Noorani

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Jiaqi Zhang ◽  
Ming Cong ◽  
Dong Liu ◽  
Yu Du ◽  
Hongjiang Ma

Purpose The purpose of this paper is to use a simple method to enhance the ability of lower limb exoskeletons to restore balance under large interference conditions and to solve the problem that biped robot stability criterion cannot be fully applied to the underactuated lower limb exoskeletons. Design/methodology/approach The method used in this paper is to construct an underactuated lower extremity exoskeleton ankle joint with a torsion spring. Based on the constructed exoskeleton, the linear inverted torsion spring pendulum model is proposed, and the traditional capture point (CP) concept is optimized. Findings The underactuated exoskeleton ankle joint with torsion springs, combined with the improved CP concept, can effectively reduce the forward stepping distance under the same interference condition, which is equivalent to enhancing the balance ability of the lower extremity exoskeleton. Originality/value The contribution of this paper is to enhance the balance ability of the exoskeleton of the lower limbs under large interference conditions. The torsion spring is used as the exoskeleton ankle joint, and the traditional CP concept is optimized according to the constructed exoskeleton.


2010 ◽  
Vol 2010.16 (0) ◽  
pp. 85-86
Author(s):  
Seiya KURODA ◽  
Koichirou HIRANO ◽  
Hiroaki KOBATASHI ◽  
Sumio TANAKA

Sign in / Sign up

Export Citation Format

Share Document