Analysis and Classification of Swallowing Sounds Using Reconstructed Phase Space Features

Author(s):  
M. Aboofazeli ◽  
Z. Moussavi
Author(s):  
Nazia Parveen, Et. al.

In this paper, the authors propose a new technique for the classification of seizures, non-seizures, and seizure-free EEG signals based on non-linear trajectories of EEG signals. The EEG signals are decomposed using the EMD technique to obtain intrinsic mode functions (IMFs). The phase space of these IMFs is then reconstructed using a novel technique of higher-order dimensions (3D, 4D, 5D, 6D, 7D, 8D, 9D, and 10D). The existing techniques of seizure detection have deployed 2D & 3D phase–space reconstruction only. The Euclidean distance of all higher-order PSR is used as a feature to classify seizures, non-seizures, and seizure-free EEG signals. The performance of the proposed method is analyzed on the Bonn University database in which 7D reconstructed phase space classification accuracy of 99.9% has been achieved both using Random Forest classifier and J48 decision tree.


2008 ◽  
Vol 168 (1) ◽  
pp. 203-211 ◽  
Author(s):  
Hsiao-Lung Chan ◽  
Tony Wu ◽  
Shih-Tseng Lee ◽  
Shih-Chin Fang ◽  
Pei-Kuang Chao ◽  
...  

2007 ◽  
Vol 17 (06) ◽  
pp. 1801-1910 ◽  
Author(s):  
ELEONORA BILOTTA ◽  
GIANPIERO DI BLASI ◽  
FAUSTO STRANGES ◽  
PIETRO PANTANO

In this article, we conclude our series of papers on the analysis and visualization of Chua attractors and their generalizations. We present a gallery of 144 n-scroll, 15 hyperchaotic and 37 synchronized systems. Along with time series and FFT we provide 3D visualizations; for some attractors we also supply Lyapunov coefficients and fractal dimensions. The goal in constructing our Gallery has been to make the general public aware of the enormous variety of chaotic phenomena and to change the widespread impression that they are isolated rarities. The Gallery provides a valuable collection of images and technical data which can be used to analyze these phenomena and to reproduce them in future studies. From a scientific point of view, we have tried to identify new methodological approaches to the study of chaos, opening nontraditional perspectives on the complexity of this domain. In our papers, we have discussed a broad range of topics, ranging from techniques for visualizing Chua attractors to computational methods allowing us to make a statistical classification of attractors' positions in phase space and to describe the evolutionary processes through which their shapes change over time. We see these processes as analogous to population dynamics in artificial environments. Within these environments, we use experimental methods to identify the models which guide morphogenetic change and which organize genetic landscapes in parameter space. This paper is organized as follows. First, we provide formal descriptions of the attractors generated by n-scroll, hyperchaotic and synchronized systems. The next section describes a Gallery of Chua attractors, generated by gradually varying the parameters and analyzing the resulting bifurcation maps. We then describe software tools allowing us to perform statistical analyses on selected sets of attractors, to visualize them, to explore their organization in phase space, and to conduct experimental investigations of the morphogenetic processes through which a small set of base attractors can generate a broad range of different forms. In the last section, we describe the creation of a Virtual 3D Gallery displaying some of the attractors we have presented in our six papers. The attractors are organized by theme, as they might be in a museum. The environment allows users to explore the attractors, interact with shapes, listen to music and sounds generated by the attractors, change their spatial organization, and create new shapes. To complete the paper — and the series — we propose a number of general conclusions.


2021 ◽  
Author(s):  
Sibghatullah I. Khan ◽  
Vikram Palodiya ◽  
Lavanya Poluboyina

Abstract Bronchiectasis and chronic obstructive pulmonary disease (COPD) are common human lung diseases. In general, the expert pulmonologistcarries preliminary screening and detection of these lung abnormalities by listening to the adventitious lung sounds. The present paper is an attempt towards the automatic detection of adventitious lung sounds ofBronchiectasis,COPD from normal lung sounds of healthy subjects. For classification of the lung sounds into a normaland adventitious category, we obtain features from phase space representation (PSR). At first, the empirical mode decomposition (EMD) is applied to lung sound signals to obtain intrinsic mode functions (IMFs). The IMFs are then further processed to construct two dimensional (2D) and three dimensional (3D) PSR. The feature space includes the 95% confidence ellipse area and interquartile range (IQR) of Euclidian distances computed from 2D and 3D PSRs, respectively. The process is carried out for the first four IMFs correspondings to normal and adventitious lung sound signals. The computed features depicta significant ability to discriminate the two categories of lung sound signals.To perform classification, we use the least square support vector machine with two kernels, namely, polynomial and radial basis function (RBF).Simulation outcomes on ICBHI 2017 lung sound dataset show the ability of the proposed method in effectively classifying normal and adventitious lung sound signals. LS-SVM is employing RBF kernel provides the highest classification accuracy of 97.67 % over feature space constituted by first, second, and fourth IMF.


2012 ◽  
Vol 562-564 ◽  
pp. 1394-1397
Author(s):  
Yu Hua Dong ◽  
Hai Chun Ning

This paper proposes a method of wavelet transform combined with SVD (Singular Value Extracting), and the abnormal data elimination in its trajectory measurement is studied. After the wavelet decomposition of the observed data, combining the approximate component and the detail component, the phase space is reconstructed. The increment criterion of singular entropy is used for the input observed matrix of SVD, and the singular value is selected. Then the original signal is reconstructed by SVD inverse transform. This method overcomes the distortion problem of data end in phase space reconstruction by Hankel matrix. The reconstructed phase space by components of wavelet decomposition is orthogonal. So it further improves the accuracy of noise reduction and abnormal detection by SVD. The results of experimental data processing show the effectiveness of this method proposed in the paper.


2018 ◽  
Vol 51 (3) ◽  
pp. 443-449 ◽  
Author(s):  
Cecília M. Costa ◽  
Ittalo S. Silva ◽  
Rafael D. de Sousa ◽  
Renato A. Hortegal ◽  
Carlos Danilo M. Regis

Sign in / Sign up

Export Citation Format

Share Document