Exterior Ballistic Data Processing by SVD and Wavelet Transform

2012 ◽  
Vol 562-564 ◽  
pp. 1394-1397
Author(s):  
Yu Hua Dong ◽  
Hai Chun Ning

This paper proposes a method of wavelet transform combined with SVD (Singular Value Extracting), and the abnormal data elimination in its trajectory measurement is studied. After the wavelet decomposition of the observed data, combining the approximate component and the detail component, the phase space is reconstructed. The increment criterion of singular entropy is used for the input observed matrix of SVD, and the singular value is selected. Then the original signal is reconstructed by SVD inverse transform. This method overcomes the distortion problem of data end in phase space reconstruction by Hankel matrix. The reconstructed phase space by components of wavelet decomposition is orthogonal. So it further improves the accuracy of noise reduction and abnormal detection by SVD. The results of experimental data processing show the effectiveness of this method proposed in the paper.

2021 ◽  
Vol 64 (1) ◽  
Author(s):  
Xiang Min ◽  
Qi Xinghua ◽  
Zhang Fengwei

Rayleigh wave detection is a recently developed method for shallow seismic exploration. Current Rayleigh wave data processing and interpretation methods can only provide the transverse average wave velocity of rock-soil bodies under the geophone array range, resulting in a low lateral resolution of wave velocity. To solve this problem, this paper presents a Rayleigh wave data processing method based on wavelet transform. First, the Hankel matrix is constructed from the intercepted Rayleigh wave, and the effective singular value is preserved by singular value decomposition to filter the Rayleigh wave. Then, the appropriate center frequency is selected and the corresponding relationship between the time and frequency of the Rayleigh wave is obtained via wavelet transform. The waveform of each frequency component can be extracted and the complete time difference of each frequency component between two geophones will be obtained and used to calculate the phase velocity-depth profile of the Rayleigh wave in a rock-soil body. This method is applied to examine unfavorable geological bodies that are underground in a yard. By combining the phase velocity-depth profiles of several survey lines, the 3-D image of phase velocity of Rayleigh wave underground can be obtained. This method can provide the phase velocity distribution of the formation below the survey line by only one measurement, which greatly improves upon the work efficiency and lateral resolution of the traditional Rayleigh wave data processing method.


2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Fu-Cheng Zhou ◽  
Gui-Ji Tang ◽  
Yu-Ling He

The ability of the frequency slice wavelet transform (FSWT) to distinguish the fault feature is weak under the condition of strong background noise; in order to solve this problem, a fault feature extraction method combining the singular value decomposition (SVD) and FSWT was proposed. Firstly, the Hankel matrix was constructed using SVD, based on which the SVD order was determined according to the principle of the single side maximum value. Then, the denoised signal was further processed by the FSWT to obtain the time-frequency spectrum of the passband. Finally, the detailed analysis was carried out in the time-frequency area with concentrated energy, and the signal was reconstructed by the inverse-FSWT. The processing effect for the pitting corrosion and the tooth broken faults of the gears shows that the faulty feature can be extracted effectively from the envelope spectrum of the reconstructed signal, which means the proposed method is able to help obtain a qualified result and has the potential to be carried out for the practical engineering application.


Author(s):  
Rahul Dixit ◽  
Amita Nandal ◽  
Arvind Dhaka ◽  
Vardan Agarwal ◽  
Yohan Varghese

Background: Nowadays information security is one of the biggest issues of social networks. The multimedia data can be tampered with, and the attackers can then claim its ownership. Image watermarking is a technique that is used for copyright protection and authentication of multimedia. Objective: We aim to create a new and more robust image watermarking technique to prevent illegal copying, editing and distribution of media. Method : The watermarking technique proposed in this paper is non-blind and employs Lifting Wavelet Transform on the cover image to decompose the image into four coefficient matrices. Then Discrete Cosine Transform is applied which separates a selected coefficient matrix into different frequencies and later Singular Value Decomposition is applied. Singular Value Decomposition is also applied to the watermarking image and it is added to the singular matrix of the cover image which is then normalized followed by the inverse Singular Value Decomposition, inverse Discrete Cosine Transform and inverse Lifting Wavelet Transform respectively to obtain an embedded image. Normalization is proposed as an alternative to the traditional scaling factor. Results: Our technique is tested against attacks like rotation, resizing, cropping, noise addition and filtering. The performance comparison is evaluated based on Peak Signal to Noise Ratio, Structural Similarity Index Measure, and Normalized Cross-Correlation. Conclusion: The experimental results prove that the proposed method performs better than other state-of-the-art techniques and can be used to protect multimedia ownership.


Sensors ◽  
2021 ◽  
Vol 21 (2) ◽  
pp. 516
Author(s):  
Brinnae Bent ◽  
Baiying Lu ◽  
Juseong Kim ◽  
Jessilyn P. Dunn

A critical challenge to using longitudinal wearable sensor biosignal data for healthcare applications and digital biomarker development is the exacerbation of the healthcare “data deluge,” leading to new data storage and organization challenges and costs. Data aggregation, sampling rate minimization, and effective data compression are all methods for consolidating wearable sensor data to reduce data volumes. There has been limited research on appropriate, effective, and efficient data compression methods for biosignal data. Here, we examine the application of different data compression pipelines built using combinations of algorithmic- and encoding-based methods to biosignal data from wearable sensors and explore how these implementations affect data recoverability and storage footprint. Algorithmic methods tested include singular value decomposition, the discrete cosine transform, and the biorthogonal discrete wavelet transform. Encoding methods tested include run-length encoding and Huffman encoding. We apply these methods to common wearable sensor data, including electrocardiogram (ECG), photoplethysmography (PPG), accelerometry, electrodermal activity (EDA), and skin temperature measurements. Of the methods examined in this study and in line with the characteristics of the different data types, we recommend direct data compression with Huffman encoding for ECG, and PPG, singular value decomposition with Huffman encoding for EDA and accelerometry, and the biorthogonal discrete wavelet transform with Huffman encoding for skin temperature to maximize data recoverability after compression. We also report the best methods for maximizing the compression ratio. Finally, we develop and document open-source code and data for each compression method tested here, which can be accessed through the Digital Biomarker Discovery Pipeline as the “Biosignal Data Compression Toolbox,” an open-source, accessible software platform for compressing biosignal data.


2021 ◽  
Vol 172 ◽  
pp. 112737
Author(s):  
Jinxin Wang ◽  
Zhimin Liu ◽  
Yuanzhe Zhao ◽  
Yahong Xie ◽  
Yuanlai Xie

Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2284
Author(s):  
Krzysztof Przystupa ◽  
Mykola Beshley ◽  
Olena Hordiichuk-Bublivska ◽  
Marian Kyryk ◽  
Halyna Beshley ◽  
...  

The problem of analyzing a big amount of user data to determine their preferences and, based on these data, to provide recommendations on new products is important. Depending on the correctness and timeliness of the recommendations, significant profits or losses can be obtained. The task of analyzing data on users of services of companies is carried out in special recommendation systems. However, with a large number of users, the data for processing become very big, which causes complexity in the work of recommendation systems. For efficient data analysis in commercial systems, the Singular Value Decomposition (SVD) method can perform intelligent analysis of information. With a large amount of processed information we proposed to use distributed systems. This approach allows reducing time of data processing and recommendations to users. For the experimental study, we implemented the distributed SVD method using Message Passing Interface, Hadoop and Spark technologies and obtained the results of reducing the time of data processing when using distributed systems compared to non-distributed ones.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Min Wang ◽  
Zhen Li ◽  
Xiangjun Duan ◽  
Wei Li

This paper proposes an image denoising method, using the wavelet transform and the singular value decomposition (SVD), with the enhancement of the directional features. First, use the single-level discrete 2D wavelet transform to decompose the noised image into the low-frequency image part and the high-frequency parts (the horizontal, vertical, and diagonal parts), with the edge extracted and retained to avoid edge loss. Then, use the SVD to filter the noise of the high-frequency parts with image rotations and the enhancement of the directional features: to filter the diagonal part, one needs first to rotate it 45 degrees and rotate it back after filtering. Finally, reconstruct the image from the low-frequency part and the filtered high-frequency parts by the inverse wavelet transform to get the final denoising image. Experiments show the effectiveness of this method, compared with relevant methods.


Author(s):  
Lakshmi M Hari ◽  
Gopinath Venugopal ◽  
Swaminathan Ramakrishnan

In this study, the dynamic contractions and the associated fatigue condition in biceps brachii muscle are analysed using Synchrosqueezed Wavelet Transform (SST) and singular value features of surface Electromyography (sEMG) signals. For this, the recorded signals are decomposed into time-frequency matrix using SST. Two analytic functions namely Morlet and Bump wavelets are utilised for the analysis. Singular Value Decomposition method is applied to this time-frequency matrix to derive the features such as Maximum Singular Value (MSV), Singular Value Entropy (SVEn) and Singular Value Energy (SVEr). The results show that both these wavelets are able to characterise nonstationary variations in sEMG signals during dynamic fatiguing contractions. Increase in values of MSV and SVEr with the progression of fatigue denotes the presence of nonstationarity in the sEMG signals. The lower values of SVEn with the progression of fatigue indicate the randomness in the signal. Thus, it appears that the proposed approach could be used to characterise dynamic muscle contractions under varied neuromuscular conditions.


Sign in / Sign up

Export Citation Format

Share Document