Coordination and cooperation for next generation wireless systems- overhead signalling requirements and cross layer considerations

Author(s):  
Angeliki Alexiou ◽  
Federico Boccardi
Author(s):  
Debabrata Sarddar ◽  
Joydeep Banerjee ◽  
Souvik Kumar Saha ◽  
M.K. Naskar ◽  
Tapas Jana ◽  
...  

1999 ◽  
Vol 87 (8) ◽  
pp. 1347-1384 ◽  
Author(s):  
I.F. Akyildiz ◽  
J. McNair ◽  
J.S.M. Ho ◽  
H. Uzunalioglu ◽  
Wenye Wang

2015 ◽  
Vol 7 (3) ◽  
pp. 1 ◽  
Author(s):  
Haider Noori AL-Hashimi ◽  
Waleed Noori Hussein

VANET Networks are one of the main next generation wireless networks which are envisaged to be an integration of homogeneous and heterogeneous wireless networks. The inter-networking of these wireless networks with the Internet will provide ubiquitous access to roaming network users. However, a seamless handover mechanism with negligible handover delay is required to maintain active connections during roaming across these networks. Several solutions, mainly involving host-based localized mobility management schemes, have been widely proposed to reduce handover delay among homogeneous and heterogeneous wireless networks. However, the handover delay remains high and unacceptable for delay-sensitive services such as real-time and multimedia services. Moreover, these services will be very common in next generation wireless networks. Unfortunately, these widely proposed host-based localized mobility management schemes involve the vehicle in mobility-related signalling hence effectively increasing the handover delay. Furthermore, these schemes do not properly address the advanced handover scenarios envisaged in future wireless networks. This paper, therefore, proposes a VANET mobility management framework utilizing cross-layer design, the IEEE 802.21 future standard, and the recently emerged network-based localized mobility management protocol, Proxy Mobile IPv6, to further reduce handover delay.


Robotics ◽  
2013 ◽  
pp. 1644-1661
Author(s):  
Ibrahima Ngom ◽  
Hamadou Saliah-Hassane ◽  
Claude Lishou

Failure to integrate heterogeneous wireless systems generally makes it difficult, if not impossible, for the continuation of remote working or remote experiments when human operators and equipment coexist through networks in a collaborative environment. Mobile laboratories using ubiquitous mobile communication for next-generation heterogeneous wireless systems have prospects for increasing the operation of distributed communication and mobile ubiquitous systems. All “technology assessors” concur that tomorrow's society will have access to smart objects (mobile devices or apparatuses, mobile equipment, e.g. robots) that contain “programs” that will assist with communication in everyday life. However one of the tomorrow’s challenges will consist of programming those objects to cooperate with and control telecommunications technologies. For a Mobile Laboratory to ensure consistent mobility in an environment, it must combine various wireless networks as a single integrated system. In this chapter we propose a Mobile Laboratory Model with mobile devices that take advantage of multiple mobile gateways by using Internet Protocol (IP) as the interconnection protocol to achieve the objective stated above.


Sign in / Sign up

Export Citation Format

Share Document