scholarly journals Exact Linear Convergence Rate Analysis for Low-Rank Symmetric Matrix Completion via Gradient Descent

Author(s):  
Trung Vu ◽  
Raviv Raich

Author(s):  
Ran Gu ◽  
Qiang Du

Abstract How to choose the step size of gradient descent method has been a popular subject of research. In this paper we propose a modified limited memory steepest descent method (MLMSD). In each iteration we propose a selection rule to pick a unique step size from a candidate set, which is calculated by Fletcher’s limited memory steepest descent method (LMSD), instead of going through all the step sizes in a sweep, as in Fletcher’s original LMSD algorithm. MLMSD is motivated by an inexact super-linear convergence rate analysis. The R-linear convergence of MLMSD is proved for a strictly convex quadratic minimization problem. Numerical tests are presented to show that our algorithm is efficient and robust.



2018 ◽  
Vol 28 (2) ◽  
pp. 1420-1447 ◽  
Author(s):  
Aryan Mokhtari ◽  
Mert Gürbüzbalaban ◽  
Alejandro Ribeiro


2019 ◽  
Vol 2019 (1) ◽  
Author(s):  
Shijie Sun ◽  
Meiling Feng ◽  
Luoyi Shi

Abstract This paper considers an iterative algorithm of solving the multiple-sets split equality problem (MSSEP) whose step size is independent of the norm of the related operators, and investigates its sublinear and linear convergence rate. In particular, we present a notion of bounded Hölder regularity property for the MSSEP, which is a generalization of the well-known concept of bounded linear regularity property, and give several sufficient conditions to ensure it. Then we use this property to conclude the sublinear and linear convergence rate of the algorithm. In the end, some numerical experiments are provided to verify the validity of our consequences.







Sign in / Sign up

Export Citation Format

Share Document