Dynamic Group Decision Making Consistence Convergence Rate Analysis Based on Inertia Particle Swarm Optimization Algorithm

Author(s):  
Lei Yang ◽  
Mingyue Jiang
Author(s):  
Rahul Roy ◽  
Satchidananda Dehuri ◽  
Sung Bae Cho

The Combinatorial problems are real world decision making problem with discrete and disjunctive choices. When these decision making problems involve more than one conflicting objective and constraint, it turns the polynomial time problem into NP-hard. Thus, the straight forward approaches to solve multi-objective problems would not give an optimal solution. In such case evolutionary based meta-heuristic approaches are found suitable. In this paper, a novel particle swarm optimization based meta-heuristic algorithm is presented to solve multi-objective combinatorial optimization problems. Here a mapping method is considered to convert the binary and discrete values (solution encoded as particles) to a continuous domain and update it using the velocity and position update equation of particle swarm optimization to find new set of solutions in continuous domain and demap it to discrete values. The performance of the algorithm is compared with other evolutionary strategy like SPEA and NSGA-II on pseudo-Boolean discrete problems and multi-objective 0/1 knapsack problem. The experimental results confirmed the better performance of combinatorial particle swarm optimization algorithm.


2020 ◽  
Vol 14 (3) ◽  
pp. 373-391
Author(s):  
Guangyan Lu ◽  
Wenjun Chang

In multiple criteria decision making (MCDM) with interval-valued belief distributions (IVBDs), individual IVBDs on multiple criteria are combined explicitly or implicitly to generate the expected utilities of alternatives, which can be used to make decisions with the aid of decision rules. To analyze an MCDM problem with a large number of criteria and grades used to profile IVBDs, effective algorithms are required to find the solutions to the optimization models within a large feasible region. An important issue is to identify an algorithm suitable for finding accurate solutions within a limited or acceptable time. To address this issue, four representative evolutionary algorithms, including genetic algorithm, differential evolution algorithm, particle swarm optimization algorithm, and gravitational search algorithm, are selected to combine individual IVBDs of alternatives and generate the minimum and maximum expected utilities of alternatives. By performing experiments with different numbers of criteria and grades, a comparative analysis of the four algorithms is provided with the aid of two indicators: accuracy and efficiency. Experimental results indicate that particle swarm optimization algorithm is the best among the four algorithms for combining individual IVBDs and generating the minimum and maximum expected utilities of alternatives.


2011 ◽  
Vol 2 (4) ◽  
pp. 41-57 ◽  
Author(s):  
Rahul Roy ◽  
Satchidananda Dehuri ◽  
Sung Bae Cho

The Combinatorial problems are real world decision making problem with discrete and disjunctive choices. When these decision making problems involve more than one conflicting objective and constraint, it turns the polynomial time problem into NP-hard. Thus, the straight forward approaches to solve multi-objective problems would not give an optimal solution. In such case evolutionary based meta-heuristic approaches are found suitable. In this paper, a novel particle swarm optimization based meta-heuristic algorithm is presented to solve multi-objective combinatorial optimization problems. Here a mapping method is considered to convert the binary and discrete values (solution encoded as particles) to a continuous domain and update it using the velocity and position update equation of particle swarm optimization to find new set of solutions in continuous domain and demap it to discrete values. The performance of the algorithm is compared with other evolutionary strategy like SPEA and NSGA-II on pseudo-Boolean discrete problems and multi-objective 0/1 knapsack problem. The experimental results confirmed the better performance of combinatorial particle swarm optimization algorithm.


Sign in / Sign up

Export Citation Format

Share Document