scholarly journals Progressive Spatio-Temporal Graph Convolutional Network for Skeleton-Based Human Action Recognition

Author(s):  
Negar Heidari ◽  
Alexandras Iosifidis
Sensors ◽  
2020 ◽  
Vol 20 (18) ◽  
pp. 5260 ◽  
Author(s):  
Fanjia Li ◽  
Juanjuan Li ◽  
Aichun Zhu ◽  
Yonggang Xu ◽  
Hongsheng Yin ◽  
...  

In the skeleton-based human action recognition domain, the spatial-temporal graph convolution networks (ST-GCNs) have made great progress recently. However, they use only one fixed temporal convolution kernel, which is not enough to extract the temporal cues comprehensively. Moreover, simply connecting the spatial graph convolution layer (GCL) and the temporal GCL in series is not the optimal solution. To this end, we propose a novel enhanced spatial and extended temporal graph convolutional network (EE-GCN) in this paper. Three convolution kernels with different sizes are chosen to extract the discriminative temporal features from shorter to longer terms. The corresponding GCLs are then concatenated by a powerful yet efficient one-shot aggregation (OSA) + effective squeeze-excitation (eSE) structure. The OSA module aggregates the features from each layer once to the output, and the eSE module explores the interdependency between the channels of the output. Besides, we propose a new connection paradigm to enhance the spatial features, which expand the serial connection to a combination of serial and parallel connections by adding a spatial GCL in parallel with the temporal GCLs. The proposed method is evaluated on three large scale datasets, and the experimental results show that the performance of our method exceeds previous state-of-the-art methods.


Author(s):  
Bin Li ◽  
Xi Li ◽  
Zhongfei Zhang ◽  
Fei Wu

With the representation effectiveness, skeleton-based human action recognition has received considerable research attention, and has a wide range of real applications. In this area, many existing methods typically rely on fixed physicalconnectivity skeleton structure for recognition, which is incapable of well capturing the intrinsic high-order correlations among skeleton joints. In this paper, we propose a novel spatio-temporal graph routing (STGR) scheme for skeletonbased action recognition, which adaptively learns the intrinsic high-order connectivity relationships for physicallyapart skeleton joints. Specifically, the scheme is composed of two components: spatial graph router (SGR) and temporal graph router (TGR). The SGR aims to discover the connectivity relationships among the joints based on sub-group clustering along the spatial dimension, while the TGR explores the structural information by measuring the correlation degrees between temporal joint node trajectories. The proposed scheme is naturally and seamlessly incorporated into the framework of graph convolutional networks (GCNs) to produce a set of skeleton-joint-connectivity graphs, which are further fed into the classification networks. Moreover, an insightful analysis on receptive field of graph node is provided to explain the necessity of our method. Experimental results on two benchmark datasets (NTU-RGB+D and Kinetics) demonstrate the effectiveness against the state-of-the-art.


2021 ◽  
Author(s):  
Jawad Khan

Recognition of human actions and associated interactions with objects and the environment is animportant problem in computer vision due to its potential applications in a variety of domains. Themost versatile methods can generalize to various environments and deal with cluttered backgrounds,occlusions, and viewpoint variations. Among them, methods based on graph convolutionalnetworks that extract features from the skeleton have demonstrated promising performance. In thispaper, we propose a novel Spatio-Temporal Pyramid Graph Convolutional Network (ST-PGN) foronline action recognition for ergonomic risk assessment that enables the use of features from alllevels of the skeleton feature hierarchy.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Min Zhang ◽  
Haijie Yang ◽  
Pengfei Li ◽  
Ming Jiang

Skeleton-based human action recognition has attracted much attention in the field of computer vision. Most of the previous studies are based on fixed skeleton graphs so that only the local physical dependencies among joints can be captured, resulting in the omission of implicit joint correlations. In addition, under different views, the content of the same action is very different. In some views, keypoints will be blocked, which will cause recognition errors. In this paper, an action recognition method based on distance vector and multihigh view adaptive network (DV-MHNet) is proposed to address this challenging task. Among the mentioned techniques, the multihigh (MH) view adaptive networks are constructed to automatically determine the best observation view at different heights, obtain complete keypoints information of the current frame image, and enhance the robustness and generalization of the model to recognize actions at different heights. Then, the distance vector (DV) mechanism is introduced on this basis to establish the relative distance and relative orientation between different keypoints in the same frame and the same keypoints in different frame to obtain the global potential relationship of each keypoint, and finally by constructing the spatial temporal graph convolutional network to take into account the information in space and time, the characteristics of the action are learned. This paper has done the ablation study with traditional spatial temporal graph convolutional networks and with or without multihigh view adaptive networks, which reasonably proves the effectiveness of the model. The model is evaluated on two widely used action recognition benchmarks (NTU-RGB + D and PKU-MMD). Our method achieves better performance on both datasets.


2021 ◽  
Vol 58 (2) ◽  
pp. 0210007
Author(s):  
张文强 Zhang Wenqiang ◽  
王增强 Wang Zengqiang ◽  
张良 Zhang Liang

2020 ◽  
Vol 34 (03) ◽  
pp. 2669-2676 ◽  
Author(s):  
Wei Peng ◽  
Xiaopeng Hong ◽  
Haoyu Chen ◽  
Guoying Zhao

Human action recognition from skeleton data, fuelled by the Graph Convolutional Network (GCN) with its powerful capability of modeling non-Euclidean data, has attracted lots of attention. However, many existing GCNs provide a pre-defined graph structure and share it through the entire network, which can loss implicit joint correlations especially for the higher-level features. Besides, the mainstream spectral GCN is approximated by one-order hop such that higher-order connections are not well involved. All of these require huge efforts to design a better GCN architecture. To address these problems, we turn to Neural Architecture Search (NAS) and propose the first automatically designed GCN for this task. Specifically, we explore the spatial-temporal correlations between nodes and build a search space with multiple dynamic graph modules. Besides, we introduce multiple-hop modules and expect to break the limitation of representational capacity caused by one-order approximation. Moreover, a corresponding sampling- and memory-efficient evolution strategy is proposed to search in this space. The resulted architecture proves the effectiveness of the higher-order approximation and the layer-wise dynamic graph modules. To evaluate the performance of the searched model, we conduct extensive experiments on two very large scale skeleton-based action recognition datasets. The results show that our model gets the state-of-the-art results in term of given metrics.


Sign in / Sign up

Export Citation Format

Share Document