Non-Gaussian BLE-Based Indoor Localization Via Gaussian Sum Filtering Coupled with Wasserstein Distance

Author(s):  
Parvin Malekzadeh ◽  
Shervin Mehryar ◽  
Petros Spachos ◽  
Konstantinos N. Plataniotis ◽  
Arash Mohammadi
2020 ◽  
Vol 12 (22) ◽  
pp. 3838
Author(s):  
Yuan Yang ◽  
Manyi Wang ◽  
Yunxia Qiao ◽  
Bo Zhang ◽  
Haoran Yang

The time-series state and parameter estimations of indoor localization continue to be a topic of growing importance. To deal with the nonlinear and positive skewed non-Gaussian dynamic of indoor CSS–TOF (Chirp-Spread-Spectrum Time-of-Flight) ranging measurements and position estimations, Monte Carlo Bayesian smoothers are promising as involving the past, present, and future observations. However, the main problems are how to derive trackable smoothing recursions and to avoid the degeneracy of particle-based smoothed distributions. To incorporate the backward smoothing density propagation with the forward probability recursion efficiently, we propose a lightweight Marginalized Particle Smoother (MPS) for nonlinear and non-Gaussian errors mitigation. The performance of the position prediction, filtering, and smoothing are investigated in real-world experiments carried out with vehicle on-board sensors. Results demonstrate the proposed smoother enables a great tool by reducing temporal and spatial errors of mobile trajectories, with the cost of a few sequence delay and a small number of particles. Therefore, MPS outperforms the filtering and smoothing methods under weak assumptions, low computation, and memory requirements. In the view that the sampled trajectories stay numerically stable, the MPS form is validated to be applicable for time-series position tracking.


2011 ◽  
Vol 213 ◽  
pp. 344-348
Author(s):  
Jian Jun Yin ◽  
Jian Qiu Zhang

A novel probability hypothesis density (PHD) filter, called the Gaussian mixture convolution PHD (GMCPHD) filter was proposed. The PHD within the filter is approximated by a Gaussian sum, as in the Gaussian mixture PHD (GMPHD) filter, but the model may be non-Gaussian and nonlinear. This is implemented by a bank of convolution filters with Gaussian approximations to the predicted and posterior densities. The analysis results show the lower complexity, more amenable for parallel implementation of the GMCPHD filter than the convolution PHD (CPHD) filter and the ability to deal with complex observation model, small observation noise and non-Gaussian noise of the proposed filter over the existing Gaussian mixture particle PHD (GMPPHD) filter. The multi-target tracking simulation results verify the effectiveness of the proposed method.


2010 ◽  
Vol 64 (1) ◽  
pp. 75-90 ◽  
Author(s):  
Ho Yun ◽  
Youngsun Yun ◽  
Changdon Kee

Carrier phase measurements are used to provide high-accuracy estimates of position. For safety-of-life navigation applications such as precision approach and landing, integrity plays a critical role. Carrier phase-based Receiver Autonomous Integrity Monitoring (CRAIM) has been investigated for many years (Pervan et al, 1998; Feng et al, 2007). Assuming that the carrier phase error has a Gaussian distribution, conventional CRAIM algorithms were directly derived from the Pseudorange-based RAIM (PRAIM). However, the actual carrier phase error does not exactly follow the Gaussian distribution, hence the performance of the conventional CRAIM algorithm is not optimal.To approach this problem, this paper proposes a new CRAIM algorithm that uses Gaussian sum filters. A Gaussian sum filter can deal with any non-Gaussian error distribution and accurately present the posterior distributions of states. In this paper, a new method of making a Gaussian mixture model, which follows the true error distribution, is introduced. Additionally an integrity monitoring algorithm, using a Gaussian sum filter, is described in detail. The simulation results show that the proposed algorithm can have about 18% smaller Minimum Detectable Bias (MDB) and generates about 20% lower protection levels than those of the conventional CRAIM algorithm. In other words, by considering a non-Gaussian carrier phase error distribution, the new algorithm can improve the accuracy and the availability.


2021 ◽  
pp. 352-363
Author(s):  
Chen Qian ◽  
Qingwei Chen ◽  
Chengying Song ◽  
Caijuan Ji ◽  
Huikun Pan

Sign in / Sign up

Export Citation Format

Share Document