carrier phase error
Recently Published Documents


TOTAL DOCUMENTS

21
(FIVE YEARS 1)

H-INDEX

6
(FIVE YEARS 0)

Author(s):  
ARUL ELANGO ◽  
René Jr Landry

Abstract Abstract: The multipath effect causes severe degradation in the positioning of commercial GPS receivers. Due to multipath error, the positioning accuracy could reach a few 10 meters. If the cumulative Multipath delay is less than 0.1-0.35 chips, then it is difficult to mitigate in GPS receivers. This causes severe degradation in GPS signals and can cause a measurement bias. To alleviate this problem, the estimation of multipath parameters using annihilating filter and its mitigation in the GPS tracking loop is proposed in this work. The estimation of randomly generated multipath signals can be performed in the receiver with a lower sampling rate when compared to the larger bandwidth of the GPS baseband signal. Here, the frequency components of the Multipath signal in superimposed complex exponentials have been transformed from the time delay and the amplitude of the path observables. The Rayleigh fading model in the urban scenario has been simulated in which the amplitude and the phase of the number of paths (i.e., the frequency component of superimposed complex exponentials) are set and this fading signal is convolved with GPS signal that forms the multipath faded signal. In the GPS receiver post-processing stage, with the help of the annihilation filter, the multipath components are estimated, then an inverse/adaptive filter and compensation technique are further applied to mitigate the multipath component. The mean square error with the different number of paths with noisy environments is analyzed utilizing the cadzaw denoising algorithm. The simulation results of the proposed technique employed in the tracking module of the software GPS receiver under severe multipath conditions indicate a substantial enhancement in the performance of the GPS receiver with minimal code and carrier phase error when compared to the least squares and adaptive blind equalization channel techniques. Moreover, the positioning accuracy is also calculated with the inclusion of multipath components in two satellites out of six satellites used in the simulation, the results showed that the annihilation filter improved the mean position accuracy up to 9.3023 meters.



Sensors ◽  
2016 ◽  
Vol 16 (12) ◽  
pp. 1988 ◽  
Author(s):  
Shuo Liu ◽  
Lei Zhang ◽  
Jian Li


2010 ◽  
Vol 64 (1) ◽  
pp. 75-90 ◽  
Author(s):  
Ho Yun ◽  
Youngsun Yun ◽  
Changdon Kee

Carrier phase measurements are used to provide high-accuracy estimates of position. For safety-of-life navigation applications such as precision approach and landing, integrity plays a critical role. Carrier phase-based Receiver Autonomous Integrity Monitoring (CRAIM) has been investigated for many years (Pervan et al, 1998; Feng et al, 2007). Assuming that the carrier phase error has a Gaussian distribution, conventional CRAIM algorithms were directly derived from the Pseudorange-based RAIM (PRAIM). However, the actual carrier phase error does not exactly follow the Gaussian distribution, hence the performance of the conventional CRAIM algorithm is not optimal.To approach this problem, this paper proposes a new CRAIM algorithm that uses Gaussian sum filters. A Gaussian sum filter can deal with any non-Gaussian error distribution and accurately present the posterior distributions of states. In this paper, a new method of making a Gaussian mixture model, which follows the true error distribution, is introduced. Additionally an integrity monitoring algorithm, using a Gaussian sum filter, is described in detail. The simulation results show that the proposed algorithm can have about 18% smaller Minimum Detectable Bias (MDB) and generates about 20% lower protection levels than those of the conventional CRAIM algorithm. In other words, by considering a non-Gaussian carrier phase error distribution, the new algorithm can improve the accuracy and the availability.





Sign in / Sign up

Export Citation Format

Share Document