Comparative analysis of security mechanism of mobile IPv6 threats against binding update, Route Optimization and Tunneling

Author(s):  
Aumdevi K. Barbudhe ◽  
Vishwajit K. Barbudhe ◽  
Chitra Dhawale
Author(s):  
Yick Hon Joseph So ◽  
Jidong Wang ◽  
Deddy Chandra

Mobile IP allows a mobile node to roam into a foreign IP network without losing its connection with its peer. Mobile IPv6 uses Route Optimization to improve the routing performance by avoiding the triangle routing problem and adopting Return Routability as a secure process for binding update. Host Identity Protocol (HIP) is an experimental security protocol which provides mobility management and multi-homing with new namespace. HIP has a similar architecture to the Mobile IP with Route Optimization. In this paper, we introduce a Secure Mobile IP with HIP Style Handshaking and Readdressing (SMIP), which provides stronger security, better performance and lower binding cost than Mobile IPv6 does in binding update process. The dependency of the home agent in the new scheme is dramatically decreased. The initiated scheme integrates the primary features of two completely different mobility management solutions and sets up a migration path from mobile-IP based solution to a public-key based solution in mobile IP networks.


2014 ◽  
Vol 2014 ◽  
pp. 1-16
Author(s):  
Peer Azmat Shah ◽  
Halabi B. Hasbullah ◽  
Ibrahim A. Lawal ◽  
Abubakar Aminu Mu’azu ◽  
Low Tang Jung

Due to the proliferation of handheld mobile devices, multimedia applications like Voice over IP (VoIP), video conferencing, network music, and online gaming are gaining popularity in recent years. These applications are well known to be delay sensitive and resource demanding. The mobility of mobile devices, running these applications, across different networks causes delay and service disruption. Mobile IPv6 was proposed to provide mobility support to IPv6-based mobile nodes for continuous communication when they roam across different networks. However, the Route Optimization procedure in Mobile IPv6 involves the verification of mobile node’s reachability at the home address and at the care-of address (home test and care-of test) that results in higher handover delays and signalling overhead. This paper presents an enhanced procedure, time-based one-time password Route Optimization (TOTP-RO), for Mobile IPv6 Route Optimization that uses the concepts of shared secret Token, time based one-time password (TOTP) along with verification of the mobile node via direct communication and maintaining the status of correspondent node’s compatibility. The TOTP-RO was implemented in network simulator (NS-2) and an analytical analysis was also made. Analysis showed that TOTP-RO has lower handover delays, packet loss, and signalling overhead with an increased level of security as compared to the standard Mobile IPv6’s Return-Routability-based Route Optimization (RR-RO).


Author(s):  
Abbas Mehdizadeh ◽  
S. Khatun ◽  
Borhanuddin M. Ali ◽  
R. S. A. Raja Abdullah ◽  
Gopakumar Kurup

2013 ◽  
Vol 284-287 ◽  
pp. 2794-2798
Author(s):  
Dong Xu Jin ◽  
Fei Shi ◽  
Joon Sup Chin ◽  
Joo Seok Song

With the development of the wireless internet, there are more and more mobile terminals. Without a mobility management protocol a mobile terminal could not communicate with other terminals when it is away from its home network. Mobile IPv6 is proposed which is host-based mobility management protocol. But it has several drawbacks, such as wireless link resource waste, load or consumption of power in mobile terminal is large. To overcome the weakness of host-based mobility management protocol, network-based mobility management protocol called Proxy Mobile IPv6 (PMIPv6) is standardized by the IETF NETLMM working group, and it is starting to attract considerable attentions. Although several proposals have been made for Route Optimization (RO), they still need too many communications and it may cause communication delay. In this paper we proposed a time-efficient RO in PMIPv6 by optimize the procedure of it. We use the characteristic of anycast to achieve the time efficiency. By the mathematical analysis we prove that the proposed protocol has shorter latency and supports faster mobility of the mobile terminals.


Sign in / Sign up

Export Citation Format

Share Document