Sleep Stage Classification Based on EEG, EOG, and CNN-GRU Deep Learning Model

Author(s):  
Isuru Niroshana S.M. ◽  
Xin Zhu ◽  
Ying Chen ◽  
Wenxi Chen
2021 ◽  
Vol 11 (4) ◽  
pp. 456
Author(s):  
Wenpeng Neng ◽  
Jun Lu ◽  
Lei Xu

In the inference process of existing deep learning models, it is usually necessary to process the input data level-wise, and impose a corresponding relational inductive bias on each level. This kind of relational inductive bias determines the theoretical performance upper limit of the deep learning method. In the field of sleep stage classification, only a single relational inductive bias is adopted at the same level in the mainstream methods based on deep learning. This will make the feature extraction method of deep learning incomplete and limit the performance of the method. In view of the above problems, a novel deep learning model based on hybrid relational inductive biases is proposed in this paper. It is called CCRRSleepNet. The model divides the single channel Electroencephalogram (EEG) data into three levels: frame, epoch, and sequence. It applies hybrid relational inductive biases from many aspects based on three levels. Meanwhile, multiscale atrous convolution block (MSACB) is adopted in CCRRSleepNet to learn the features of different attributes. However, in practice, the actual performance of the deep learning model depends on the nonrelational inductive biases, so a variety of matching nonrelational inductive biases are adopted in this paper to optimize CCRRSleepNet. The CCRRSleepNet is tested on the Fpz-Cz and Pz-Oz channel data of the Sleep-EDF dataset. The experimental results show that the method proposed in this paper is superior to many existing methods.


Author(s):  
Stanislas Chambon ◽  
Mathieu N. Galtier ◽  
Pierrick J. Arnal ◽  
Gilles Wainrib ◽  
Alexandre Gramfort

Author(s):  
Asma Salamatian ◽  
Ali Khadem

Purpose: Sleep is one of the necessities of the body, such as eating, drinking, etc., that affects different aspects of human life. Sleep monitoring and sleep stage classification play an important role in the diagnosis of sleeprelated diseases and neurological disorders. Empirically, classification of sleep stages is a time-consuming, tedious, and complex task, which heavily depends on the experience of the experts. As a result, there is a crucial need for an automatic efficient sleep staging system. Materials and Methods: This study develops a 13-layer 1D Convolutional Neural Network (CNN) using singlechannel Electroencephalogram (EEG) signal for extracting features automatically and classifying the sleep stages. To overcome the negative effect of an imbalance dataset, we have used the Synthetic Minority Oversampling Technique (SMOTE). In our study, the single-channel EEG signal is given to a 1D CNN, without any feature extraction/selection processes. This deep network can self-learn the discriminative features from the EEG signal. Results: Applying the proposed method to sleep-EDF dataset resulted in overall accuracy, sensitivity, specificity, and Precision of 94.09%, 74.73%, 96.43%, and 71.02%, respectively, for classifying five sleep stages. Using single-channel EEG and providing a network with fewer trainable parameters than most of the available deep learning-based methods are the main advantages of the proposed method. Conclusion: In this study, a 13-layer 1D CNN model was proposed for sleep stage classification. This model has an end-to-end complete architecture and does not require any separate feature extraction/selection and classification stages. Having a low number of network parameters and layers while still having high classification accuracy, is the main advantage of the proposed method over most of the previous deep learning-based approaches.


2021 ◽  
Author(s):  
Charles A Ellis ◽  
Robyn L Miller ◽  
Vince Calhoun

The frequency domain of electroencephalography (EEG) data has developed as a particularly important area of EEG analysis. EEG spectra have been analyzed with explainable machine learning and deep learning methods. However, as deep learning has developed, most studies use raw EEG data, which is not well-suited for traditional explainability methods. Several studies have introduced methods for spectral insight into classifiers trained on raw EEG data. These studies have provided global insight into the frequency bands that are generally important to a classifier but do not provide local insight into the frequency bands important for the classification of individual samples. This local explainability could be particularly helpful for EEG analysis domains like sleep stage classification that feature multiple evolving states. We present a novel local spectral explainability approach and use it to explain a convolutional neural network trained for automated sleep stage classification. We use our approach to show how the relative importance of different frequency bands varies over time and even within the same sleep stages. Furthermore, to better understand how our approach compares to existing methods, we compare a global estimate of spectral importance generated from our local results with an existing global spectral importance approach. We find that the δ band is most important for most sleep stages, though β is most important for the non-rapid eye movement 2 (NREM2) sleep stage. Additionally, θ is particularly important for identifying Awake and NREM1 samples. Our study represents the first approach developed for local spectral insight into deep learning classifiers trained on raw EEG time series.


2021 ◽  
Author(s):  
Nikhil Vyas ◽  
Kelly Ryoo ◽  
Hosanna Tesfaye ◽  
Ruhan Yi ◽  
Marjorie Skubic

2018 ◽  
Vol 30 (06) ◽  
pp. 1850041
Author(s):  
Thakerng Wongsirichot ◽  
Anantaporn Hanskunatai

Sleep Stage Classification (SSC) is a standard process in the Polysomnography (PSG) for studying sleep patterns and events. The SSC provides sleep stage information of a patient throughout an entire sleep test. A physician uses results from SSCs to diagnose sleep disorder symptoms. However, the SSC data processing is time-consuming and requires trained sleep technicians to complete the task. Over the years, researchers attempted to find alternative methods, which are known as Automatic Sleep Stage Classification (ASSC), to perform the task faster and more efficiently. Proposed ASSC techniques usually derived from existing statistical methods and machine learning (ML) techniques. The objective of this study is to develop a new hybrid ASSC technique, Multi-Layer Hybrid Machine Learning Model (MLHM), for classifying sleep stages. The MLHM blends two baseline ML techniques, Decision Tree (DT) and Support Vector Machine (SVM). It operates on a newly developed multi-layer architecture. The multi-layer architecture consists of three layers for classifying [Formula: see text], [Formula: see text] and [Formula: see text], [Formula: see text], [Formula: see text] in different epoch lengths. Our experiment design compares MLHM and baseline ML techniques and other research works. The dataset used in this study was derived from the ISRUC-Sleep database comprising of 100 subjects. The classification performances were thoroughly reviewed using the hold-out and the 10-fold cross-validation method in both subject-specific and subject-independent classifications. The MLHM achieved a certain satisfactory classification results. It gained 0.694[Formula: see text][Formula: see text][Formula: see text]0.22 of accuracy ([Formula: see text]) in subject-specific classification and 0.942[Formula: see text][Formula: see text][Formula: see text]0.02 of accuracy ([Formula: see text]) in subject-independent classification. The pros and cons of the MLHM with the multi-layer architecture were thoroughly discussed. The effect of class imbalance was rationally discussed towards the classification results.


Sign in / Sign up

Export Citation Format

Share Document