scholarly journals A Novel Local Explainability Approach for Spectral Insight into Raw EEG-Based Deep Learning Classifiers

2021 ◽  
Author(s):  
Charles A Ellis ◽  
Robyn L Miller ◽  
Vince Calhoun

The frequency domain of electroencephalography (EEG) data has developed as a particularly important area of EEG analysis. EEG spectra have been analyzed with explainable machine learning and deep learning methods. However, as deep learning has developed, most studies use raw EEG data, which is not well-suited for traditional explainability methods. Several studies have introduced methods for spectral insight into classifiers trained on raw EEG data. These studies have provided global insight into the frequency bands that are generally important to a classifier but do not provide local insight into the frequency bands important for the classification of individual samples. This local explainability could be particularly helpful for EEG analysis domains like sleep stage classification that feature multiple evolving states. We present a novel local spectral explainability approach and use it to explain a convolutional neural network trained for automated sleep stage classification. We use our approach to show how the relative importance of different frequency bands varies over time and even within the same sleep stages. Furthermore, to better understand how our approach compares to existing methods, we compare a global estimate of spectral importance generated from our local results with an existing global spectral importance approach. We find that the δ band is most important for most sleep stages, though β is most important for the non-rapid eye movement 2 (NREM2) sleep stage. Additionally, θ is particularly important for identifying Awake and NREM1 samples. Our study represents the first approach developed for local spectral insight into deep learning classifiers trained on raw EEG time series.

2021 ◽  
Author(s):  
Charles A. Ellis ◽  
Mohammad S.E. Sendi ◽  
Robyn L Miller ◽  
Vince D. Calhoun

The automated feature extraction capabilities of deep learning classifiers have promoted their broader application to EEG analysis. In contrast to earlier machine learning studies that used extracted features and traditional explainability approaches, explainability for classifiers trained on raw data is particularly challenging. As such, studies have begun to present methods that provide insight into the spectral features learned by deep learning classifiers trained on raw EEG. These approaches have two key shortcomings. (1) They involve perturbation, which can create out-of-distribution samples that cause inaccurate explanations. (2) They are global, not local. Local explainability approaches can be used to examine how demographic and clinical variables affected the patterns learned by the classifier. In our study, we present a novel local spectral explainability approach. We apply it to a convolutional neural network trained for automated sleep stage classification. We apply layer-wise relevance propagation to identify the relative importance of the features in the raw EEG and subsequently examine the frequency domain of the explanations to determine the importance of each canonical frequency band locally and globally. We then perform a statistical analysis to determine whether age and sex affected the patterns learned by the classifier for each frequency band and sleep stage. Results showed that δ, β, and γ were the overall most important frequency bands. In addition, age and sex significantly affected the patterns learned by the classifier for most sleep stages and frequency bands. Our study presents a novel spectral explainability approach that could substantially increase the level of insight into classifiers trained on raw EEG.


Author(s):  
Asma Salamatian ◽  
Ali Khadem

Purpose: Sleep is one of the necessities of the body, such as eating, drinking, etc., that affects different aspects of human life. Sleep monitoring and sleep stage classification play an important role in the diagnosis of sleeprelated diseases and neurological disorders. Empirically, classification of sleep stages is a time-consuming, tedious, and complex task, which heavily depends on the experience of the experts. As a result, there is a crucial need for an automatic efficient sleep staging system. Materials and Methods: This study develops a 13-layer 1D Convolutional Neural Network (CNN) using singlechannel Electroencephalogram (EEG) signal for extracting features automatically and classifying the sleep stages. To overcome the negative effect of an imbalance dataset, we have used the Synthetic Minority Oversampling Technique (SMOTE). In our study, the single-channel EEG signal is given to a 1D CNN, without any feature extraction/selection processes. This deep network can self-learn the discriminative features from the EEG signal. Results: Applying the proposed method to sleep-EDF dataset resulted in overall accuracy, sensitivity, specificity, and Precision of 94.09%, 74.73%, 96.43%, and 71.02%, respectively, for classifying five sleep stages. Using single-channel EEG and providing a network with fewer trainable parameters than most of the available deep learning-based methods are the main advantages of the proposed method. Conclusion: In this study, a 13-layer 1D CNN model was proposed for sleep stage classification. This model has an end-to-end complete architecture and does not require any separate feature extraction/selection and classification stages. Having a low number of network parameters and layers while still having high classification accuracy, is the main advantage of the proposed method over most of the previous deep learning-based approaches.


2019 ◽  
Vol 20 (S16) ◽  
Author(s):  
Ye Yuan ◽  
Kebin Jia ◽  
Fenglong Ma ◽  
Guangxu Xun ◽  
Yaqing Wang ◽  
...  

Abstract Background Sleep is a complex and dynamic biological process characterized by different sleep patterns. Comprehensive sleep monitoring and analysis using multivariate polysomnography (PSG) records has achieved significant efforts to prevent sleep-related disorders. To alleviate the time consumption caused by manual visual inspection of PSG, automatic multivariate sleep stage classification has become an important research topic in medical and bioinformatics. Results We present a unified hybrid self-attention deep learning framework, namely HybridAtt, to automatically classify sleep stages by capturing channel and temporal correlations from multivariate PSG records. We construct a new multi-view convolutional representation module to learn channel-specific and global view features from the heterogeneous PSG inputs. The hybrid attention mechanism is designed to further fuse the multi-view features by inferring their dependencies without any additional supervision. The learned attentional representation is subsequently fed through a softmax layer to train an end-to-end deep learning model. Conclusions We empirically evaluate our proposed HybridAtt model on a benchmark PSG dataset in two feature domains, referred to as the time and frequency domains. Experimental results show that HybridAtt consistently outperforms ten baseline methods in both feature spaces, demonstrating the effectiveness of HybridAtt in the task of sleep stage classification.


2022 ◽  
Author(s):  
Chandra Bhushan Kumar

<div>In this study, we have proposed SCL-SSC(Supervised Contrastive Learning for Sleep Stage Classification), a deep learning-based framework for sleep stage classification which performs the task in two stages, 1) feature representation learning, and 2) classification. The feature learner is trained separately to represent the raw EEG signals in the feature space such that the distance between the embedding of EEG signals of the same sleep stage has less than the distance between the embedding of EEG signals of different sleep stages in the euclidean space. On top of feature learners, we have trained the classifier to perform the classification task. The distribution of sleep stages is not uniform in the PSG data, wake(W) and N2 sleep stages appear more frequently than the other sleep stages, which leads to an imbalance dataset problem. This paper addresses this issue by using weighted softmax cross-entropy loss function and also dataset oversampling technique utilized to produce synthetic data points for minority sleep stages for approximately balancing the number of sleep stages in the training dataset. The performance of our proposed model is evaluated on the publicly available Physionet datasets EDF-Sleep 2013 and 2018 versions. We have trained and evaluated our model on two EEG channels (Fpz-Cz and Pz-Oz) on these datasets separately. The evaluation result shows that the performance of SCL-SSC is the best annotation performance compared to the existing state-of art deep learning algorithms to our best of knowledge, with an overall accuracy of 94.1071% with a macro F1 score of 92.6416 and Cohen’s Kappa coefficient(κ) 0.9197. Our ablation studies on SCL-SSC shows that both triplet loss based pre-training of feature learner and oversampling of minority classes are contributing to better performance of the model(SCL-SSC).</div>


2022 ◽  
Author(s):  
Chandra Bhushan Kumar

<div>In this study, we have proposed SCL-SSC(Supervised Contrastive Learning for Sleep Stage Classification), a deep learning-based framework for sleep stage classification which performs the task in two stages, 1) feature representation learning, and 2) classification. The feature learner is trained separately to represent the raw EEG signals in the feature space such that the distance between the embedding of EEG signals of the same sleep stage has less than the distance between the embedding of EEG signals of different sleep stages in the euclidean space. On top of feature learners, we have trained the classifier to perform the classification task. The distribution of sleep stages is not uniform in the PSG data, wake(W) and N2 sleep stages appear more frequently than the other sleep stages, which leads to an imbalance dataset problem. This paper addresses this issue by using weighted softmax cross-entropy loss function and also dataset oversampling technique utilized to produce synthetic data points for minority sleep stages for approximately balancing the number of sleep stages in the training dataset. The performance of our proposed model is evaluated on the publicly available Physionet datasets EDF-Sleep 2013 and 2018 versions. We have trained and evaluated our model on two EEG channels (Fpz-Cz and Pz-Oz) on these datasets separately. The evaluation result shows that the performance of SCL-SSC is the best annotation performance compared to the existing state-of art deep learning algorithms to our best of knowledge, with an overall accuracy of 94.1071% with a macro F1 score of 92.6416 and Cohen’s Kappa coefficient(κ) 0.9197. Our ablation studies on SCL-SSC shows that both triplet loss based pre-training of feature learner and oversampling of minority classes are contributing to better performance of the model(SCL-SSC).</div>


2021 ◽  
Vol 1 (1) ◽  
pp. 11-17
Author(s):  
Tim Cvetko ◽  
◽  
Tinkara Robek ◽  

Sleep specialists often conduct manual sleep stage scoring by visually inspecting the patient's neurophysiological signals collected at sleep labs. This is a difficult, tedious and a time-consuming task. The limitations of manual sleep stage scor- ing have escalated the demand for developing Automatic Sleep Stage Classification (ASSC) systems. Sleep stage classification refers to identifying the various stages of sleep and is a critical step in an effort to assist physicians in the diag- nosis and treatment of related sleep disorders. In this paper, we propose a novel method and a practical approach to predicting early onsets of sleep syndromes utilizing the Twin Convolutional Model FTC2, including restless leg syndrome, insomnia, based on an algorithm which is comprised of two modules. A Fast Fourier Transform is applied to 30 seconds long epochs of EEG recordings to provide localized time-frequency information, and a deep convolutional LSTM neural network is trained for sleep stage classification. Automating sleep stages detection from EEG data offers a great potential to tackling sleep irregularities on a daily basis. Thereby, a novel approach for sleep stage classification is pro- posed which combines the best of signal processing and statistics. In this study, we used the PhysioNet Sleep European Data Format (EDF) Database. The code evaluation showed impressive results, reaching accuracy of 90.43, precision of 77.76, recall of 93,32, F1-score of 89.12 with the final mean false error loss 0.09. All the source code is availlable at https://github.com/timothy102/eeg.


2021 ◽  
Author(s):  
Charles A Ellis ◽  
Mohammad S.E. Sendi ◽  
Robyn L Miller ◽  
Vince D Calhoun

Spectral analysis remains a hallmark approach for gaining insight into electrophysiology modalities like electroencephalography (EEG). As the field of deep learning has progressed, more studies have begun to train deep learning classifiers on raw EEG data, which presents unique problems for explainability. A growing number of studies have presented explainability approaches that provide insight into the spectral features learned by deep learning classifiers. However, existing approaches only attribute importance to different frequency bands. Most of the methods cannot provide insight into the actual spectral values or the relationship between spectral features that models have learned. Here, we present a novel adaptation of activation maximization for electrophysiology time-series that generates samples that indicate the features learned by classifiers by optimizing their spectral content. We evaluate our approach within the context of EEG sleep stage classification with a convolutional neural network, and we find that our approach is able to identify spectral patterns known to be associated with each sleep stage. We also find surprising results suggesting that our classifier may have prioritized the use of eye and motion artifact when identifying Awake samples. Our approach is the first adaptation of activation maximization to the domain of raw electrophysiology classification. Additionally, our approach has implications for explaining any classifier trained on highly dynamic, long time-series.


2020 ◽  
Vol 10 (24) ◽  
pp. 8963
Author(s):  
Hui Wen Loh ◽  
Chui Ping Ooi ◽  
Jahmunah Vicnesh ◽  
Shu Lih Oh ◽  
Oliver Faust ◽  
...  

Sleep is vital for one’s general well-being, but it is often neglected, which has led to an increase in sleep disorders worldwide. Indicators of sleep disorders, such as sleep interruptions, extreme daytime drowsiness, or snoring, can be detected with sleep analysis. However, sleep analysis relies on visuals conducted by experts, and is susceptible to inter- and intra-observer variabilities. One way to overcome these limitations is to support experts with a programmed diagnostic tool (PDT) based on artificial intelligence for timely detection of sleep disturbances. Artificial intelligence technology, such as deep learning (DL), ensures that data are fully utilized with low to no information loss during training. This paper provides a comprehensive review of 36 studies, published between March 2013 and August 2020, which employed DL models to analyze overnight polysomnogram (PSG) recordings for the classification of sleep stages. Our analysis shows that more than half of the studies employed convolutional neural networks (CNNs) on electroencephalography (EEG) recordings for sleep stage classification and achieved high performance. Our study also underscores that CNN models, particularly one-dimensional CNN models, are advantageous in yielding higher accuracies for classification. More importantly, we noticed that EEG alone is not sufficient to achieve robust classification results. Future automated detection systems should consider other PSG recordings, such as electroencephalogram (EEG), electrooculogram (EOG), and electromyogram (EMG) signals, along with input from human experts, to achieve the required sleep stage classification robustness. Hence, for DL methods to be fully realized as a practical PDT for sleep stage scoring in clinical applications, inclusion of other PSG recordings, besides EEG recordings, is necessary. In this respect, our report includes methods published in the last decade, underscoring the use of DL models with other PSG recordings, for scoring of sleep stages.


2020 ◽  
Vol 10 (5) ◽  
pp. 1797 ◽  
Author(s):  
Mera Kartika Delimayanti ◽  
Bedy Purnama ◽  
Ngoc Giang Nguyen ◽  
Mohammad Reza Faisal ◽  
Kunti Robiatul Mahmudah ◽  
...  

Manual classification of sleep stage is a time-consuming but necessary step in the diagnosis and treatment of sleep disorders, and its automation has been an area of active study. The previous works have shown that low dimensional fast Fourier transform (FFT) features and many machine learning algorithms have been applied. In this paper, we demonstrate utilization of features extracted from EEG signals via FFT to improve the performance of automated sleep stage classification through machine learning methods. Unlike previous works using FFT, we incorporated thousands of FFT features in order to classify the sleep stages into 2–6 classes. Using the expanded version of Sleep-EDF dataset with 61 recordings, our method outperformed other state-of-the art methods. This result indicates that high dimensional FFT features in combination with a simple feature selection is effective for the improvement of automated sleep stage classification.


Sign in / Sign up

Export Citation Format

Share Document