DFT-OFDM systems with real modulation and DC-biasing for intensity modulated direct-detection optical communications

Author(s):  
Jian A. Zhang ◽  
Xiaojing Huang
2015 ◽  
Vol 2015 ◽  
pp. 1-10
Author(s):  
Zhongpeng Wang ◽  
Xiumin Wang ◽  
Fangni Chen ◽  
Weiwei Qiu ◽  
Linpeng Ye

A scaling technique is employed to improve the performance of a Discrete Cosine Transform (DCT) precoded optical intensity-modulated direct detection (IM/DD) OFDM system, which fully exploits the dynamic range of a digital-to-analog converter (DAC). The theoretical analysis shows that the proposed scaling scheme can improve the BER performance of DCT precoded and scaled OFDM systems. The experiment results also show that the proposed scheme significantly improves the BER performance without changing the receiver structure. The measured received sensitivity at a BER of 10−3for a 4 G samples/s (2.7 Gbits/s) DCT precoded and scaled OFDM signal and after 100 km standard single-mode fiber (SMF) transmission has been improved by 3 and 1.3 dB when compared with the original OFDM system and conventional DCT precoded OFDM system, respectively.


Author(s):  
Josep M. Fabrega ◽  
Pascual Sevillano ◽  
Michela Svaluto Moreolo ◽  
Juan Jose Martinez ◽  
Asier Villafranca ◽  
...  

2015 ◽  
Vol 33 (7) ◽  
pp. 1417-1424 ◽  
Author(s):  
Mohamed Morsy-Osman ◽  
Mathieu Chagnon ◽  
Michel Poulin ◽  
Stephane Lessard ◽  
David V. Plant

2019 ◽  
Vol 0 (0) ◽  
Author(s):  
Asmaa Benieddi ◽  
Sid Ahmed Elahmar

AbstractDirect detection optical orthogonal frequency division multiplexing (DDO-OFDM) systems for a long-reach of standard single mode fiber (SSMF) require a large length of cyclic prefix (CP) to avoid the inter-symbol interference (ISI) effect caused by group velocity dispersion (GVD). Unfortunately, this method is inefficient due to the energy wasted in CP samples. In order to reduce the CP length and to mitigate the residual ISI, a novel blind adaptive channel shortening equalizer (CSE) is proposed in this paper. Based on the orthogonality between subcarriers in the fast Fourier transform (FFT) property, the proposed algorithm attempts to minimize the sum-squared correlation (SSCM) between each sample located in a well-defined window to update the CSE coefficients. Thus, the combined channel-CSE response is shortened. Therefore, it can cancel the residual ISI effect due to the GVD and the short CP length. The performance of the system is evaluated on basis of bit error rate (BER) versus optical signal to noise ratio (OSNR) for different CP lengths. The simulation results validate the new algorithm SSCM and show that it can reduce the CP length with a much better system improvement than existing algorithms.


Sign in / Sign up

Export Citation Format

Share Document