Design of Robust Optimal Fractional-order PID Controller using Salp Swarm Algorithm for Automatic Voltage Regulator (AVR) System

Author(s):  
Prajakta Sirsode ◽  
Arti Tare ◽  
Vijay Pande
Electronics ◽  
2019 ◽  
Vol 8 (12) ◽  
pp. 1472 ◽  
Author(s):  
Ismail Akbar Khan ◽  
Ali S. Alghamdi ◽  
Touqeer Ahmed Jumani ◽  
Arbab Alamgir ◽  
Ahmed Bilal Awan ◽  
...  

Owing to the superior transient and steady-state performance of the fractional-order proportional-integral-derivative (FOPID) controller over its conventional counterpart, this paper exploited its application in an automatic voltage regulator (AVR) system. Since the FOPID controller contains two more control parameters (µ and λ ) as compared to the conventional PID controller, its tuning process was comparatively more complex. Thus, the intelligence of one of the most recently developed metaheuristic algorithms, called the salp swarm optimization algorithm (SSA), was utilized to select the optimized parameters of the FOPID controller in order to achieve the optimal dynamic response and enhanced stability of the studied AVR system. To validate the effectiveness of the proposed method, its performance was compared with that of the recently used tuning methods for the same system configuration and operating conditions. Furthermore, a stability analysis was carried out using pole-zero and bode stability criteria. Finally, in order to check the robustness of the developed system against the system parameter variations, a robustness analysis of the developed system was undertaken. The results show that the proposed SSA-based FOPID tuning method for the AVR system outperformed its conventional counterparts in terms of dynamic response and stability measures.


Mathematics ◽  
2020 ◽  
Vol 8 (7) ◽  
pp. 1182 ◽  
Author(s):  
Mihailo Micev ◽  
Martin Ćalasan ◽  
Diego Oliva

This paper presents a novel method for optimal tunning of a Fractional Order Proportional-Integral-Derivative (FOPID) controller for an Automatic Voltage Regulator (AVR) system. The presented method is based on the Yellow Saddle Goatfish Algorithm (YSGA), which is improved with Chaotic Logistic Maps. Additionally, a novel objective function for the optimization of the FOPID parameters is proposed. The performance of the obtained FOPID controller is verified by comparison with various FOPID controllers tuned by other metaheuristic algorithms. A comparative analysis is performed in terms of step response, frequency response, root locus, robustness test, and disturbance rejection ability. Results of the simulations undoubtedly show that the FOPID controller tuned with the proposed Chaotic Yellow Saddle Goatfish Algorithm (C-YSGA) outperforms FOPID controllers tuned by other algorithms, in all of the previously mentioned performance tests.


Sign in / Sign up

Export Citation Format

Share Document