Power Distribution Control Law for FCHEV - A Fuzzy Logic-Based Approach

Author(s):  
Hyun-Sik Ahn ◽  
Nam-Su Lee
1989 ◽  
Vol 111 (2) ◽  
pp. 128-137 ◽  
Author(s):  
S. Daley ◽  
K. F. Gill

A study is described that compares the performance of a self-organizing fuzzy logic control law (SOC) with that of the more traditional P + D algorithm. The multivariate problem used for the investigation is the attitude control of a flexible satellite that has significant dynamic coupling of the axes. It is demonstrated that the SOC can provide good control, requires limited process knowledge and compares favorably with the P + D algorithm.


2022 ◽  
Vol 168 ◽  
pp. 108917
Author(s):  
Chengxuan Zhao ◽  
Xiao Yang ◽  
Minghan Yang ◽  
Jianye Wang ◽  
Shuai Chen

Author(s):  
Ram Kumar ◽  
Afzal Sikander

Purpose This paper aims to suggest the parameter identification of load frequency controller in power system. Design/methodology/approach The suggested control approach is established using fuzzy logic to design a fractional order load frequency controller. A new suitable control law is developed using fuzzy logic, and based on this developed control law, the unknown parameters of the fractional order proportional integral derivative (FOPID) controller are derived using an optimization technique, which is being used by minimizing the integral square error. In addition, to confirm the effectiveness of the proposed control design approach, numerous simulation tests were carried out on an actual single-area power system. Findings The obtained results reveal the superiority of the suggested controller as compared to the recently developed controllers with regard to time response specifications and quantifiable indicators. Additionally, the potential of the suggested controller is also observed by improving the load disturbance rejections under plant parametric uncertainty. Originality/value To the best of the authors’ knowledge, the work is not published anywhere else.


Author(s):  
Achmad Solih ◽  
Jamaaluddin Jamaaluddin

Panel system power distribution at Lippo Plaza Mall Sidoarjo consists of several parts, namely from Cubicle 20 KV, 20 KV step-down transformer for 380 V, then the supply to LVMDP (Low Voltage Main Distribution Panel) The new panel to the user. Before delivery to users to note that the power factor is corrected using a capacitor bank. Less good a power factor is turned into inductive load on the capacitor bank so that temperatures high  because of high load resulting capacitor bank erupt. To overcome in this study proposes a safety panel automation power distribution control system using a microcontroller. Control system microcontrollers for safety panel power distribution consists of: Microcontroller (Arduino Nano), Light sensor (LDR), temperature sensor (LM35DZ), LCD 16x2 I2C, Actuators (fan, buzzer, relay switch breaker network three phase), switch ( relay 5 VDC), ADC as Input data. The working principle of this microcontroller LM35DZ if the sensor detects a high temperature fan will flash, if the LDR sensor detects sparks then the buzzer will sound as a warning sign of the dangers and disconnected the electricity network. From the design of a safety tool for power distribution panels due to high temperatures or sparks as well as the expected rate of fire outbreaks can be prevented.


Sign in / Sign up

Export Citation Format

Share Document