Improvement of Fuel Economy Using Fuzzy Logic-Based Power Distribution Control Strategy for a FCHEV

Author(s):  
Nam-su Lee ◽  
Gu-min Jeong ◽  
Hyun-sik Ahn
Author(s):  
Guangwen Bi ◽  
Chuntao Tang ◽  
Bo Yang

Elimination of soluble boron will be a challenge to reactor operation for PWR. This paper is to promote a control strategy of soluble boron-free operation for a small PWR, through selection of burnable poison (BP), BP loading and control rod loading, based on the reactivity balance and manage requirement. The analysis for on-power operation and shutdown condition indicated that this strategy could be suitable for long-term and short-term reactivity and power distribution control for soluble boron-free operation.


2021 ◽  
Vol 49 (3) ◽  
pp. 711-718
Author(s):  
Stefan Milićević ◽  
Ivan Blagojević ◽  
Slavko Muždeka

All recent technological developments in the field of power distribution in hybrid electric tracked vehicles are often hard to apply and carry high computational burden which makes them impractical for real-time applications. In this paper, a novel control strategy is proposed for parallel hybrid electric tracked vehicle based on robust and easy to implement thermostat strategy with added merits of power follower control strategy (PFCS). The goal of the control strategy is enhanced fuel economy. Serbian infantry fighting vehicle BVP M80-A is chosen as the reference vehicle. For the purpose of validation, a backward-looking, high fidelity model is created in Simulink environment. Investigation of the results indicates that the proposed control strategy offers 12.8% better fuel economy while effectively maintaining battery state of charge (SOC). Even better results (23.2%) were achieved applying the proposed strategy to a model with an additional generator. It is concluded that further improvements can be made with combined sizing and control optimization.


Sign in / Sign up

Export Citation Format

Share Document