The vibration controller design using positive position feedback control

Author(s):  
WonChul Jung ◽  
IlHwan Noh ◽  
Dongyeop Kang
2010 ◽  
Vol 17 (2) ◽  
pp. 187-203 ◽  
Author(s):  
Li Jun

The application of active linear absorber based on positive position feedback control strategy to suppress the high-amplitude response of a flexible beam subjected to a primary external excitation is developed and investigated. A mathematical nonlinear model that describes the single-mode dynamic behavior of the beam is considered. The perturbation method of multiple scales is employed to find the general nonlinear response of the system and four first-order differential equations governing the amplitudes and phases of the responses are derived. Then a stability analysis is conducted for the open- and closed-loop responses of the system and the performance of the control strategy is analyzed. A parametric investigation is carried out to investigate the effects of changing the damping ratio of the absorber and the value of the feedback gain as well as the effect of detuning the frequency of the absorber on the responses of the system. It is demonstrated that the positive position feedback control technique is effective in reducing the high-amplitude vibration of the model and the control scheme possesses a wide suppression bandwidth if the absorber's frequency is properly tuned. Finally, the numerical simulations are performed to validate the perturbation solutions.


Author(s):  
Z Yu ◽  
Y Guo ◽  
L Wang ◽  
L Wu

This paper presents the large angle attitude manoeuvre control design of a single-axis flexible spacecraft system that consists of a central rigid body and a cantilever beam with bonded piezoelectric sensor/actuator pairs as a flexible appendage. The proposed control strategy combines the attitude controller designed by the adaptive robust control technique with the active vibration controller designed by the positive position feedback control method. The desired angular position of the spacecraft is planned and an adaptive robust attitude control approach based on a projection type adaptation law is proposed to track the planned path and to achieve precise attitude manoeuvre control. Meanwhile, the positive position feedback control method is applied to actively increase the damping of the flexible appendage and to suppress the residual vibration induced by manoeuvre. Improved transient and steady state performance during and after large angle attitude manoeuvre can be both achieved by integration of the technical merits of all these control methods. Analytical and numerical results illustrate the effectiveness of this approach.


Sign in / Sign up

Export Citation Format

Share Document