Research on Performance-Based Navigation Data Drawing Technology

Author(s):  
Gongbo Chai ◽  
Yuanhao Zhao ◽  
Guanyu Wang
Author(s):  
Roger Nicholson

Abstract Logical-to-physical device navigation for failure analysis is often used to drive physical probers and focused ion beam tools. Traditional methods of creating navigation data rely upon the use of time consuming Layout-versus-Schematic (LVS) based methods. By using existing place-and-route data, full cross-linked navigation between schematic and physical layout may be achieved in a fraction of the time that it takes for the LVS methods to be used. Place-and-route data offers significantly more information to the analyst than LVS based data.


2020 ◽  
Vol 5 (2) ◽  
pp. 676-682
Author(s):  
Andrey Rudenko ◽  
Tomasz P. Kucner ◽  
Chittaranjan S. Swaminathan ◽  
Ravi T. Chadalavada ◽  
Kai O. Arras ◽  
...  

Sensors ◽  
2021 ◽  
Vol 21 (5) ◽  
pp. 1695
Author(s):  
Constantin-Octavian Andrei ◽  
Sonja Lahtinen ◽  
Markku Poutanen ◽  
Hannu Koivula ◽  
Jan Johansson

The tenth launch (L10) of the European Global Navigation Satellite System Galileo filled in all orbital slots in the constellation. The launch carried four Galileo satellites and took place in July 2018. The satellites were declared operational in February 2019. In this study, we report on the performance of the Galileo L10 satellites in terms of orbital inclination and repeat period parameters, broadcast satellite clocks and signal in space (SiS) performance indicators. We used all available broadcast navigation data from the IGS consolidated navigation files. These satellites have not been reported in the previous studies. First, the orbital inclination (56.7±0.15°) and repeat period (50680.7±0.22 s) for all four satellites are within the nominal values. The data analysis reveals also 13.5-, 27-, 177- and 354-days periodic signals. Second, the broadcast satellite clocks show different correction magnitude due to different trends in the bias component. One clock switch and several other minor correction jumps have occurred since the satellites were declared operational. Short-term discontinuities are within ±1 ps/s, whereas clock accuracy values are constantly below 0.20 m (root-mean-square—rms). Finally, the SiS performance has been very high in terms of availability and accuracy. Monthly SiS availability has been constantly above the target value of 87% and much higher in 2020 as compared to 2019. Monthly SiS accuracy has been below 0.20 m (95th percentile) and below 0.40 m (99th percentile). The performance figures depend on the content and quality of the consolidated navigation files as well as the precise reference products. Nevertheless, these levels of accuracy are well below the 7 m threshold (95th percentile) specified in the Galileo service definition document.


Author(s):  
Ashlynn M. Keller ◽  
Holly A. Taylor ◽  
Tad T. Brunyé

Abstract Navigating an unfamiliar city almost certainly brings out uncertainty about getting from place to place. This uncertainty, in turn, triggers information gathering. While navigational uncertainty is common, little is known about what type of information people seek when they are uncertain. The primary choices for information types with environments include landmarks (distal or local), landmark configurations (relation between two or more landmarks), and a distinct geometry, at least for some environments. Uncertainty could lead individuals to more likely seek one of these information types. Extant research informs both predictions about and empirical work exploring this question. This review covers relevant cognitive literature and then suggests empirical approaches to better understand information-seeking actions triggered by uncertainty. Notably, we propose that examining continuous navigation data can provide important insights into information seeking. Benefits of continuous data will be elaborated through one paradigm, spatial reorientation, which intentionally induces uncertainty through disorientation and cue conflict. While this and other methods have been used previously, data have primarily reflected only the final choice. Continuous behavior during a task can better reveal the cognition-action loop contributing to spatial learning and decision making.


2012 ◽  
Vol 256-259 ◽  
pp. 2279-2284
Author(s):  
Lian Ying Li ◽  
Zhang Huang ◽  
Xiao Lan Xu

A necessary updating degree is vital for the digital map data in a vehicle navigation system. Only when the digital map data are well updated, can the quality of the navigation be assured. Today the companies devoting to the production of digital map data for vehicle navigation have to cost much labor, material and capital to collect and update data in order to maintain a necessary updating degree. Throughout the history of electronic navigation data updating, they have made considerable progress both on the methods and processes of data production, and the way of map management. Updating from the CD to the network, from the wired to the wireless, from the replacing to the incremental way, each of the technical changes is a power source to enhance the data updating rate. As we all know, the change detection is a prerequisite and base for the electronic navigation data updating. By rapidly developing the area with changes and using the appropriate updating method, we can scientifically maintain the original database of navigation data and terminal physical data. In view of this, starting from application needs for dynamic data updating, this paper analyses change detection methods of navigation data in different versions used for generating incremental data, and focuses on that of rasterizing features and attributes, exploring a new approach to quickly get the incremental data between versions.


Sign in / Sign up

Export Citation Format

Share Document