Optimized PID Controller for Single Area Thermal Power System Based on Time Varying Acceleration Coefficients Particle Swarm optimization

Author(s):  
Qaher Mohammed Abdo ◽  
Heisum Ewad ◽  
Khaleel Agail Mohamed
2019 ◽  
Vol 2019 ◽  
pp. 1-19 ◽  
Author(s):  
Shanhe Jiang ◽  
Chaolong Zhang ◽  
Wenjin Wu ◽  
Shijun Chen

In this paper, a novel hybrid optimization approach, namely, gravitational particle swarm optimization algorithm (GPSOA), is introduced based on particle swarm optimization (PSO) and gravitational search algorithm (GSA) to solve combined economic and emission dispatch (CEED) problem considering wind power availability for the wind-thermal power system. The proposed algorithm shows an interesting hybrid strategy and perfectly integrates the collective behaviors of PSO with the Newtonian gravitation laws of GSA. GPSOA updates particle’s velocity caused by the dependent random cooperation of GSA gravitational acceleration and PSO velocity. To describe the stochastic characteristics of wind speed and output power, Weibull-based probability density function (PDF) is utilized. The CEED model employed consists of the fuel cost objective and emission-level target produced by conventional thermal generators and the operational cost generated by wind turbines. The effectiveness of the suggested GPSOA is tested on the conventional thermal generator system and the modified wind-thermal power system. Results of GPSOA-based CEED problems by means of the optimal fuel cost, emission value, and best compromise solution are compared with the original PSO, GSA, and other state-of-the-art optimization approaches to reveal that the introduced GPSOA exhibits competitive performance improvements in finding lower fuel cost and emission cost and best compromise solution.


Author(s):  
Smrutiranjan Nayak ◽  
Sanjeeb Kumar Kar ◽  
Subhransu Sekhar Dash

In continually increasing area and structure of modern power system having burden demand uncertainties, the use of knowledgeable and vigorous frequency power strategy is essential for the satisfactory functioning of the Power system. A combined fuzzy proportional-integral-derivative (CFPID) controller is suggested for frequency supervision of the power system. To optimize the controller parameters, a review of sine and cosine work adjusted improved whale optimization algorithm (SCiWOA) has been utilized. The next practical application of power-system frequency control is performed by designing a CFPID controller using the proposed SCiWOA technique for a smart grid system having inexhaustible sources like sun oriented, wind, photovoltaic and capacity gadgets like a battery, flywheel just as module electric vehicles. The first advantages of the SCiWOA tuned CFPID controller over hybrid-particle-swarm-optimization and pattern-search (hPSO-PS) adjusted fuzzy proportional-integral (FPI) controller, hybrid bacterial foraging optimization algorithm-particle swarm optimization (hBFOA-PSO) adjusted proportional-integral (PI) controller, genetic algorithm (GA) tuned proportional and integral (PI) controller, BFOA adjusted PI controller, jaya algoritm (JA) tuned PID with derivative filter (PIDN) controller and teaching learning based optimization (TLBO) tuned proportional-integral-derivative (PID) controller are demonstrated for the two-area non-reheat thermal power system. The second advantages of the SCiWOA tuned CFPID controller over artificial-bee-colony (ABC) tuned PID controller, SOSA tuned PID controller and Firefly algorithm (FA) tuned PID controller are demonstrated for two-area reheat thermal power system. It is seen that SCiWOA based CFPID controller is more effective in controlling the recurrence comparative with PID regulator.


2017 ◽  
Vol 6 (2) ◽  
pp. 42-63 ◽  
Author(s):  
Ajit Kumar Barisal ◽  
Tapas Kumar Panigrahi ◽  
Somanath Mishra

This article presents a hybrid PSO with Levy flight algorithm (LFPSO) for optimization of the PID controllers and employed in automatic generation control (AGC) of nonlinear power system. The superiority of the proposed LFPSO approach has been demonstrated with comparing to recently published Lozi map-based chaotic optimization algorithm (LCOA) and Particle swarm optimization to solve load-frequency control (LFC) problem. It is found that the proposed LFPSO method has robust dynamic behavior in terms of settling times, overshoots and undershoots by varying the system parameters and loading conditions from their nominal values as well as size and locations of disturbance. Secondly, a three-area thermal power system is considered with nonlinear as Generation Rate Constraints (GRC) and outperforms to the results of Bacteria Foraging algorithm based integral controller as well as hybrid Differential Evolution and Particle Swarm Optimization based fuzzy PID controller for the similar power system. Finally, the proficiency of the proposed controller is also verified by random load patterns.


2015 ◽  
pp. 462-481 ◽  
Author(s):  
Naglaa K. Bahgaat ◽  
M. I. El-Sayed ◽  
M. A. Moustafa Hassan ◽  
F. A. Bendary

The main objective of Load Frequency Control (LFC) is to regulate the power output of the electric generator within an area in response to changes in system frequency and tie-line loading. Thus the LFC helps in maintaining the scheduled system frequency and tie-line power interchange with the other areas within the prescribed limits. Most LFCs are primarily composed of an integral controller. The integrator gain is set to a level that compromises between fast transient recovery and low overshoot in the dynamic response of the overall system. This type of controller is slow and does not allow the controller designer to take into account possible changes in operating conditions and non-linearities in the generator unit. Moreover, it lacks robustness. This paper studies LFC in two areas power system using PID controller. In this paper, PID parameters are tuned using different tuning techniques. The overshoots and settling times with the proposed controllers are better than the outputs of the conventional PID controllers. This paper uses MATLAB/SIMULINK software. Simulations are done by using the same PID parameters for the two different areas because it gives a better performance for the system frequency response than the case of using two different sets of PID parameters for the two areas. The used methods in this paper are: a) Particle Swarm Optimization, b) Adaptive Weight Particle Swarm Optimization, c) Adaptive Acceleration Coefficients based PSO (AACPSO) and d) Adaptive Neuro Fuzzy Inference System (ANFIS). The comparison has been carried out for these different controllers for two areas power system. Therefore, the article presents advanced techniques for Load Frequency Control. These proposed techniques are based on Artificial Intelligence. It gives promising results.


2014 ◽  
Vol 3 (3) ◽  
pp. 1-24 ◽  
Author(s):  
Naglaa K. Bahgaat ◽  
M. I. El-Sayed ◽  
M. A. Moustafa Hassan ◽  
F. A. Bendary

The main objective of Load Frequency Control (LFC) is to regulate the power output of the electric generator within an area in response to changes in system frequency and tie-line loading. Thus the LFC helps in maintaining the scheduled system frequency and tie-line power interchange with the other areas within the prescribed limits. Most LFCs are primarily composed of an integral controller. The integrator gain is set to a level that compromises between fast transient recovery and low overshoot in the dynamic response of the overall system. This type of controller is slow and does not allow the controller designer to take into account possible changes in operating conditions and non-linearities in the generator unit. Moreover, it lacks robustness. This paper studies LFC in two areas power system using PID controller. In this paper, PID parameters are tuned using different tuning techniques. The overshoots and settling times with the proposed controllers are better than the outputs of the conventional PID controllers. This paper uses MATLAB/SIMULINK software. Simulations are done by using the same PID parameters for the two different areas because it gives a better performance for the system frequency response than the case of using two different sets of PID parameters for the two areas. The used methods in this paper are: a) Particle Swarm Optimization, b) Adaptive Weight Particle Swarm Optimization, c) Adaptive Acceleration Coefficients based PSO (AACPSO) and d) Adaptive Neuro Fuzzy Inference System (ANFIS). The comparison has been carried out for these different controllers for two areas power system. Therefore, the article presents advanced techniques for Load Frequency Control. These proposed techniques are based on Artificial Intelligence. It gives promising results.


Sign in / Sign up

Export Citation Format

Share Document