Angle fingerprint: A database-driven method for indoor localization

Author(s):  
Ze Zheng ◽  
Guoru Ding
Keyword(s):  
Author(s):  
Nadia Ghariani ◽  
Mohamed Salah Karoui ◽  
Mondher Chaoui ◽  
Mongi Lahiani ◽  
Hamadi Ghariani

Author(s):  
Mohammad Salimibeni ◽  
Zohreh Hajiakhondi-Meybodi ◽  
Parvin Malekzadeh ◽  
Mohammadamin Atashi ◽  
Konstantinos N. Plataniotis ◽  
...  

2020 ◽  
Author(s):  
Wenhao Zhang ◽  
Ramin Ramezani ◽  
Zhuoer Xie ◽  
John Shen ◽  
David Elashoff ◽  
...  

BACKGROUND The availability of low cost ubiquitous wearable sensors has enabled researchers, in recent years, to collect a large volume of data in various domains including healthcare. The goal has been to harness wearables to further investigate human activity, physiology and functional patterns. As such, on-body sensors have been primarily used in healthcare domain to help predict adverse outcomes such as hospitalizations or fall, thereby enabling clinicians to develop better intervention guidelines and personalized models of care to prevent harmful outcomes. In the previous studies [9,10] and the patent application [11], we introduced a generic framework (Sensing At-Risk Population) that draws on the classification of human movements using a 3-axial accelerometer and extraction of indoor localization using BLE beacons, in concert. This work is to address the longitudinal analyses of a particular cohort using the introduced framework in a skilled nursing facility. OBJECTIVE (a) To observe longitudinal changes of physical activity and indoor localization features of rehabilitation-dwelling patients, (b) to assess if such changes can be used at early stages during the rehabilitation period to discriminate between patients that will be re-hospitalized versus the ones that will be discharged to a community setting and (c) to investigate if the sensor based longitudinal changes can imitate patients changes captured by therapist assessments over the course of rehabilitation. METHODS Pearson correlation was used to compare occupational therapy (OT) and physical therapy (PT) assessments with sensor-based features. Generalized Linear Mixed Model was used to find associations between functional measures with sensor based features. RESULTS Energy intensity at therapy room was positively associated with transfer general (β=0.22;SE=0.08;p<.05). Similarly, sitting energy intensity showed positive association with transfer general (β=0.16;SE=0.07;p<.05). Laying down energy intensity was negatively associated with hygiene grooming (β=-0.27;SE=0.14;p<.05). The interaction of sitting energy intensity with time (β=-0.13;SE=.06;p<.05) was associated with toileting general. Dressing lower body was strongly correlated with overall energy intensity (r = 0.66), standing energy intensity (r = 0.61), and laying down energy intensity (r = 0.72) on the first clinical assessment session. CONCLUSIONS This study demonstrates that a combination of indoor localization and physical activity tracking produces a series of features, a subset of which can provide crucial information on the storyline of daily and longitudinal activity patterns of rehabilitation-dwelling patients.


IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 57036-57048 ◽  
Author(s):  
Xinxin Wang ◽  
Danyang Qin ◽  
Ruolin Guo ◽  
Min Zhao ◽  
Lin Ma ◽  
...  

IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 59750-59759
Author(s):  
Ahmed M. Elmoogy ◽  
Xiaodai Dong ◽  
Tao Lu ◽  
Robert Westendorp ◽  
Kishore Reddy Tarimala

Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1090
Author(s):  
Wenxu Wang ◽  
Damián Marelli ◽  
Minyue Fu

A popular approach for solving the indoor dynamic localization problem based on WiFi measurements consists of using particle filtering. However, a drawback of this approach is that a very large number of particles are needed to achieve accurate results in real environments. The reason for this drawback is that, in this particular application, classical particle filtering wastes many unnecessary particles. To remedy this, we propose a novel particle filtering method which we call maximum likelihood particle filter (MLPF). The essential idea consists of combining the particle prediction and update steps into a single one in which all particles are efficiently used. This drastically reduces the number of particles, leading to numerically feasible algorithms with high accuracy. We provide experimental results, using real data, confirming our claim.


Sensors ◽  
2021 ◽  
Vol 21 (2) ◽  
pp. 532
Author(s):  
Henglin Pu ◽  
Chao Cai ◽  
Menglan Hu ◽  
Tianping Deng ◽  
Rong Zheng ◽  
...  

Multiple blind sound source localization is the key technology for a myriad of applications such as robotic navigation and indoor localization. However, existing solutions can only locate a few sound sources simultaneously due to the limitation imposed by the number of microphones in an array. To this end, this paper proposes a novel multiple blind sound source localization algorithms using Source seParation and BeamForming (SPBF). Our algorithm overcomes the limitations of existing solutions and can locate more blind sources than the number of microphones in an array. Specifically, we propose a novel microphone layout, enabling salient multiple source separation while still preserving their arrival time information. After then, we perform source localization via beamforming using each demixed source. Such a design allows minimizing mutual interference from different sound sources, thereby enabling finer AoA estimation. To further enhance localization performance, we design a new spectral weighting function that can enhance the signal-to-noise-ratio, allowing a relatively narrow beam and thus finer angle of arrival estimation. Simulation experiments under typical indoor situations demonstrate a maximum of only 4∘ even under up to 14 sources.


2020 ◽  
pp. 1-1
Author(s):  
Hongji Cao ◽  
Yunjia Wang ◽  
Jingxue Bi
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document