Improvement of the lighting fixtures based indoor localization method CEPHEID

Author(s):  
Hiroyuki Kobayashi
2013 ◽  
Vol 479-480 ◽  
pp. 1213-1217
Author(s):  
Mu Yen Chen ◽  
Ming Ni Wu ◽  
Hsien En Lin

This study integrates the concept of context-awareness with association algorithms and social media to establish the Context-aware and Social Recommendation System (CASRS). The Simple RSSI Indoor Localization Module (SRILM) locates the user position; integrating SRILM with Apriori Recommendation Module (ARM) provides effective recommended product information. The Social Media Recommendation Module (SMRM) connects to users social relations, so that the effectiveness for users to gain product information is greatly enhanced. This study develops the system based on actual context.


Sensors ◽  
2019 ◽  
Vol 19 (4) ◽  
pp. 875 ◽  
Author(s):  
Xiaochao Dang ◽  
Xiong Si ◽  
Zhanjun Hao ◽  
Yaning Huang

With the rapid development of wireless network technology, wireless passive indoor localization has become an increasingly important technique that is widely used in indoor location-based services. Channel state information (CSI) can provide more detailed and specific subcarrier information, which has gained the attention of researchers and has become an emphasis in indoor localization technology. However, existing research has generally adopted amplitude information for eigenvalue calculations. There are few research studies that have used phase information from CSI signals for localization purposes. To eliminate the signal interference existing in indoor environments, we present a passive human indoor localization method named FapFi, which fuses CSI amplitude and phase information to fully utilize richer signal characteristics to find location. In the offline stage, we filter out redundant values and outliers in the CSI amplitude information and then process the CSI phase information. A fusion method is utilized to store the processed amplitude and phase information as a fingerprint database. The experimental data from two typical laboratory and conference room environments were gathered and analyzed. The extensive experimental results demonstrate that the proposed algorithm is more efficient than other algorithms in data processing and achieves decimeter-level localization accuracy.


2014 ◽  
Vol 627 ◽  
pp. 217-222
Author(s):  
Kok Seng Eu ◽  
Kian Meng Yap ◽  
Tiam Hee Tee

Indoor localization system has been a popular research area in recent decades and many of them are based on multiple beacons localization method. However, there are some special applications to which the multiple beacons method is not an optimal solution due to its overdesign and cost of redundancy. Multiple beacons method uses at least three transducers and each transducer’s location must be known to find the location of a target object by using either Triangulation or Trilateration calculation. When the multiple beacons method is applied in an items lost and found system, the precise Cartesian coordinates of a target item can be found, but it is definitely overdesign and incurring redundant cost. It is due to the fact that the target item requires only two simple information i.e. Clock orientation and distance information; therefore, single beacon is enough for the task. In this paper, we propose a single beacon localization method to optimize the solution in the items lost and found system by utilizing clock orientation and estimated distance information. The proposed single beacon localization algorithm has been demonstrated and proven that it can be one of the optimal solutions for items lost and found system.


Sensors ◽  
2020 ◽  
Vol 20 (23) ◽  
pp. 6756
Author(s):  
DongHyun Ko ◽  
Seok-Hwan Choi ◽  
Sungyong Ahn ◽  
Yoon-Ho Choi

With the development of wireless networks and mobile devices, interest on indoor localization systems (ILSs) has increased. In particular, Wi-Fi-based ILSs are widely used because of the good prediction accuracy without additional hardware. However, as the prediction accuracy decreases in environments with natural noise, some studies were conducted to remove it. So far, two representative methods, i.e., the filtering-based method and deep learning-based method, have shown a significant effect in removing natural noise. However, the prediction accuracy of these methods severely decreased under artificial noise caused by adversaries. In this paper, we introduce a new media access control (MAC) spoofing attack scenario injecting artificial noise, where the prediction accuracy of Wi-Fi-based indoor localization system significantly decreases. We also propose a new deep learning-based indoor localization method using random forest(RF)-filter to provide the good prediction accuracy under the new MAC spoofing attack scenario. From the experimental results, we show that the proposed indoor localization method provides much higher prediction accuracy than the previous methods in environments with artificial noise.


Sign in / Sign up

Export Citation Format

Share Document