Graph Neural Network with Multilevel Feature Fusion for EEG based Brain-Computer Interface

Author(s):  
Youngchul Kwak ◽  
Woo-Jin Song ◽  
Seong-Eun Kim
2018 ◽  
Vol 28 (10) ◽  
pp. 1850034 ◽  
Author(s):  
Wei Li ◽  
Mengfan Li ◽  
Huihui Zhou ◽  
Genshe Chen ◽  
Jing Jin ◽  
...  

Increasing command generation rate of an event-related potential-based brain-robot system is challenging, because of limited information transfer rate of a brain-computer interface system. To improve the rate, we propose a dual stimuli approach that is flashing a robot image and is scanning another robot image simultaneously. Two kinds of event-related potentials, N200 and P300 potentials, evoked in this dual stimuli condition are decoded by a convolutional neural network. Compared with the traditional approaches, this proposed approach significantly improves the online information transfer rate from 23.0 or 17.8 to 39.1 bits/min at an accuracy of 91.7%. These results suggest that combining multiple types of stimuli to evoke distinguishable ERPs might be a promising direction to improve the command generation rate in the brain-computer interface.


2021 ◽  
Vol 11 (12) ◽  
pp. 2918-2927
Author(s):  
A. Shankar ◽  
S. Muttan ◽  
D. Vaithiyanathan

Brain Computer Interface (BCI) is a fast growing area of research to enable communication between our brains and computers. EEG based motor imagery BCI involves the user imagining movement, the subsequent recording and signal processing on the electroencephalogram signals from the brain, and the translation of those signals into specific commands. Ultimately, motor imagery BCI has the potential to be applied to helping those with special abilities recover motor control. This paper presents an evaluation of performance for EEG based motor imagery BCI with a classification accuracy of 80.2%, making use of features extracted using the Fast Fourier Transform and the Discrete Wavelet Transform, and classification is done using an Artificial Neural Network. It goes on to conclude how the performance is affected by the particular feature sets and neural network parameters.


Entropy ◽  
2019 ◽  
Vol 21 (12) ◽  
pp. 1199 ◽  
Author(s):  
Hyeon Kyu Lee ◽  
Young-Seok Choi

The motor imagery-based brain-computer interface (BCI) using electroencephalography (EEG) has been receiving attention from neural engineering researchers and is being applied to various rehabilitation applications. However, the performance degradation caused by motor imagery EEG with very low single-to-noise ratio faces several application issues with the use of a BCI system. In this paper, we propose a novel motor imagery classification scheme based on the continuous wavelet transform and the convolutional neural network. Continuous wavelet transform with three mother wavelets is used to capture a highly informative EEG image by combining time-frequency and electrode location. A convolutional neural network is then designed to both classify motor imagery tasks and reduce computation complexity. The proposed method was validated using two public BCI datasets, BCI competition IV dataset 2b and BCI competition II dataset III. The proposed methods were found to achieve improved classification performance compared with the existing methods, thus showcasing the feasibility of motor imagery BCI.


Sign in / Sign up

Export Citation Format

Share Document