Performance evaluation of land cover change detection algorithms using remotely sensed data

Author(s):  
L. Antony Jude ◽  
A. Suruliandi
2019 ◽  
Vol 8 (1) ◽  
pp. 50 ◽  
Author(s):  
Huaqiao Xing ◽  
Jun Chen ◽  
Hao Wu ◽  
Dongyang Hou

Remotely sensed imagery-based change detection is an effective approach for identifying land cover change information. A large number of change detection algorithms have been developed that satisfy different requirements. However, most change detection algorithms have been developed using desktop-based software in offline environments; thus, it is increasingly difficult for common end-users, who have limited remote sensing experience and geographic information system (GIS) skills, to perform appropriate change detection tasks. To address this challenge, this paper proposes an online geoprocessing system for supporting intelligent land cover change detection (OGS-LCCD). This system leverages web service encapsulation technology and an automatic service composition approach to dynamically generate a change detection service chain. First, a service encapsulation strategy is proposed with an execution body encapsulation and service semantics description. Then, a constraint rule-based service composition method is proposed to chain several web services into a flexible change detection workflow. Finally, the design and implementation of the OGS-LCCD are elaborated. A step-by-step walk-through example for a web-based change detection task is presented using this system. The experimental results demonstrate the effectiveness and applicability of the prototype system.


2021 ◽  
Vol 10 (5) ◽  
pp. 325
Author(s):  
Ima Ituen ◽  
Baoxin Hu

Mapping and understanding the differences in land cover and land use over time is an essential component of decision-making in sectors such as resource management, urban planning, and forest fire management, as well as in tracking of the impacts of climate change. Existing methods sometimes pose a barrier to the effective monitoring of changes in land cover and land use, since a threshold parameter is often needed and determined based on trial and error. This study aimed to develop an automatic and operational method for change detection on a large scale from Moderate Resolution Imaging Spectroradiometer (MODIS) data. Super pixels were the basic unit of analysis instead of traditional individual pixels. T2 tests based on the feature vectors of temporal Normalized Difference Vegetation Index (NDVI) and land surface temperature were used for change detection. The developed method was applied to data over a predominantly vegetated area in northern Ontario, Canada spanning 120,000 sq. km from 2001–2016. The accuracies ranged between 78% and 88% for the NDVI-based test, from 74% to 86% for the LST-based test, and from 70% to 86% for the joint method compared with manual interpretation. Our proposed method for detecting land cover change provides a functional and viable alternative to existing methods of land cover change detection as it is reliable, repeatable, and free from uncertainty in establishing a threshold for change.


Sign in / Sign up

Export Citation Format

Share Document