Detection of Parkinson Disease Using Variational Mode Decomposition of Speech Signal

Author(s):  
Biswajit Karan ◽  
Kartik Mahto ◽  
Sitanshu Sekhar Sahu
Author(s):  
Poovarasan Selvaraj ◽  
E. Chandra

In Speech Enhancement (SE) techniques, the major challenging task is to suppress non-stationary noises including white noise in real-time application scenarios. Many techniques have been developed for enhancing the vocal signals; however, those were not effective for suppressing non-stationary noises very well. Also, those have high time and resource consumption. As a result, Sliding Window Empirical Mode Decomposition and Hurst (SWEMDH)-based SE method where the speech signal was decomposed into Intrinsic Mode Functions (IMFs) based on the sliding window and the noise factor in each IMF was chosen based on the Hurst exponent data. Also, the least corrupted IMFs were utilized to restore the vocal signal. However, this technique was not suitable for white noise scenarios. Therefore in this paper, a Variant of Variational Mode Decomposition (VVMD) with SWEMDH technique is proposed to reduce the complexity in real-time applications. The key objective of this proposed SWEMD-VVMDH technique is to decide the IMFs based on Hurst exponent and then apply the VVMD technique to suppress both low- and high-frequency noisy factors from the vocal signals. Originally, the noisy vocal signal is decomposed into many IMFs using SWEMDH technique. Then, Hurst exponent is computed to decide the IMFs with low-frequency noisy factors and Narrow-Band Components (NBC) is computed to decide the IMFs with high-frequency noisy factors. Moreover, VVMD is applied on the addition of all chosen IMF to remove both low- and high-frequency noisy factors. Thus, the speech signal quality is improved under non-stationary noises including additive white Gaussian noise. Finally, the experimental outcomes demonstrate the significant speech signal improvement under both non-stationary and white noise surroundings.


Sensors ◽  
2021 ◽  
Vol 21 (6) ◽  
pp. 1952
Author(s):  
May Phu Paing ◽  
Supan Tungjitkusolmun ◽  
Toan Huy Bui ◽  
Sarinporn Visitsattapongse ◽  
Chuchart Pintavirooj

Automated segmentation methods are critical for early detection, prompt actions, and immediate treatments in reducing disability and death risks of brain infarction. This paper aims to develop a fully automated method to segment the infarct lesions from T1-weighted brain scans. As a key novelty, the proposed method combines variational mode decomposition and deep learning-based segmentation to take advantages of both methods and provide better results. There are three main technical contributions in this paper. First, variational mode decomposition is applied as a pre-processing to discriminate the infarct lesions from unwanted non-infarct tissues. Second, overlapped patches strategy is proposed to reduce the workload of the deep-learning-based segmentation task. Finally, a three-dimensional U-Net model is developed to perform patch-wise segmentation of infarct lesions. A total of 239 brain scans from a public dataset is utilized to develop and evaluate the proposed method. Empirical results reveal that the proposed automated segmentation can provide promising performances with an average dice similarity coefficient (DSC) of 0.6684, intersection over union (IoU) of 0.5022, and average symmetric surface distance (ASSD) of 0.3932, respectively.


Sign in / Sign up

Export Citation Format

Share Document