Optimal Routing Scheduling Strategy Based on Prediction of Ocean Current Movement for Underwater Wireless Sensor Networks

Author(s):  
Biaohang Sun ◽  
Yun Li ◽  
Shanlin Sun ◽  
Liang Qiao ◽  
Kai Tian ◽  
...  
2012 ◽  
Vol 488-489 ◽  
pp. 1163-1167
Author(s):  
Yan Ping Cong ◽  
Zhi Qiang Wei ◽  
Guang Yang

In this paper, we studied the trust management problem in one-hop cluster-based underwater wireless sensor networks (UWSNs). Trust plays an important role in constructing UWSNs. Due to the dynamic natures of UWSNs (current movement, addition or deletion of nodes) and the massive deployment of underwater sensor nodes, coupled with the short range of water acoustic communications, we need to ensure that all communicating nodes are trusted. We propose a hierarchical trust management scheme for one-hop cluster-based underwater wireless sensor networks.


2018 ◽  
Vol 6 (2) ◽  
pp. 238-241 ◽  
Author(s):  
Pushpender Sarao ◽  
◽  
Kannaiah Chattu ◽  
Ch. Swapna ◽  
◽  
...  

Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1368 ◽  
Author(s):  
Luoheng Yan ◽  
Yuyao He ◽  
Zhongmin Huangfu

The underwater wireless sensor networks (UWSNs) have been applied in lots of fields such as environment monitoring, military surveillance, data collection, etc. Deployment of sensor nodes in 3D UWSNs is a crucial issue, however, it is a challenging problem due to the complex underwater environment. This paper proposes a growth ring style uneven node depth-adjustment self-deployment optimization algorithm (GRSUNDSOA) to improve the coverage and reliability of UWSNs, meanwhile, and to solve the problem of energy holes. In detail, a growth ring style-based scheme is proposed for constructing the connective tree structure of sensor nodes and a global optimal depth-adjustment algorithm with the goal of comprehensive optimization of both maximizing coverage utilization and energy balance is proposed. Initially, the nodes are scattered to the water surface to form a connected network on this 2D plane. Then, starting from sink node, a growth ring style increment strategy is presented to organize the common nodes as tree structures and each root of subtree is determined. Meanwhile, with the goal of global maximizing coverage utilization and energy balance, all nodes depths are computed iteratively. Finally, all the nodes dive to the computed position once and a 3D underwater connected network with non-uniform distribution and balanced energy is constructed. A series of simulation experiments are performed. The simulation results show that the coverage and reliability of UWSN are improved greatly under the condition of full connectivity and energy balance, and the issue of energy hole can be avoided effectively. Therefore, GRSUNDSOA can prolong the lifetime of UWSN significantly.


Sign in / Sign up

Export Citation Format

Share Document