scholarly journals Large-Scale Image Annotation by Efficient and Robust Kernel Metric Learning

Author(s):  
Zheyun Feng ◽  
Rong Jin ◽  
Anil Jain
Author(s):  
Wenjia Cai ◽  
Jie Xu ◽  
Ke Wang ◽  
Xiaohong Liu ◽  
Wenqin Xu ◽  
...  

Abstract Anterior segment eye diseases account for a significant proportion of presentations to eye clinics worldwide, including diseases associated with corneal pathologies, anterior chamber abnormalities (e.g. blood or inflammation) and lens diseases. The construction of an automatic tool for the segmentation of anterior segment eye lesions will greatly improve the efficiency of clinical care. With research on artificial intelligence progressing in recent years, deep learning models have shown their superiority in image classification and segmentation. The training and evaluation of deep learning models should be based on a large amount of data annotated with expertise, however, such data are relatively scarce in the domain of medicine. Herein, the authors developed a new medical image annotation system, called EyeHealer. It is a large-scale anterior eye segment dataset with both eye structures and lesions annotated at the pixel level. Comprehensive experiments were conducted to verify its performance in disease classification and eye lesion segmentation. The results showed that semantic segmentation models outperformed medical segmentation models. This paper describes the establishment of the system for automated classification and segmentation tasks. The dataset will be made publicly available to encourage future research in this area.


Author(s):  
Bao Bing-Kun ◽  
Yan Shuicheng

Graph-based learning provides a useful approach for modeling data in image annotation problems. In this chapter, the authors introduce how to construct a region-based graph to annotate large scale multi-label images. It has been well recognized that analysis in semantic region level may greatly improve image annotation performance compared to that in whole image level. However, the region level approach increases the data scale to several orders of magnitude and lays down new challenges to most existing algorithms. To this end, each image is firstly encoded as a Bag-of-Regions based on multiple image segmentations. And then, all image regions are constructed into a large k-nearest-neighbor graph with efficient Locality Sensitive Hashing (LSH) method. At last, a sparse and region-aware image-based graph is fed into the multi-label extension of the Entropic graph regularized semi-supervised learning algorithm (Subramanya & Bilmes, 2009). In combination they naturally yield the capability in handling large-scale dataset. Extensive experiments on NUS-WIDE (260k images) and COREL-5k datasets well validate the effectiveness and efficiency of the framework for region-aware and scalable multi-label propagation.


2011 ◽  
Vol 268-270 ◽  
pp. 1386-1389
Author(s):  
Xiao Ying Wu ◽  
Yun Juan Liang ◽  
Li Li ◽  
Li Juan Ma

In this paper, improve the image annotation with semantic meaning, and name the new algorithm for semantic fusion of image annotation, that is a image is given to be labeled, use of training data set, the word set, and a collection of image area and other information to establish the probability model ,estimates the joint probability by word and given image areas.The probability value as the size, combined with keywords relevant table that integrates lexical semantics to extract keywords as the most representative image semantic annotation results. The algorithm can effectively use large-scale training data with rich annotation, so as to achieve better recall and precision than the existing automatic image annotation ,and validate the algorithm in the Corel data set.


Author(s):  
Hong Liu ◽  
Jie Li ◽  
Yongjian Wu ◽  
Rongrong Ji

Symmetric positive defined (SPD) matrix has attracted increasing research focus in image/video analysis, which merits in capturing the Riemannian geometry in its structured 2D feature representation. However, computation in the vector space on SPD matrices cannot capture the geometric properties, which corrupts the classification performance. To this end, Riemannian based deep network has become a promising solution for SPD matrix classification, because of its excellence in performing non-linear learning over SPD matrix. Besides, Riemannian metric learning typically adopts a kNN classifier that cannot be extended to large-scale datasets, which limits its application in many time-efficient scenarios. In this paper, we propose a Bag-of-Matrix-Summarization (BoMS) method to be combined with Riemannian network, which handles the above issues towards highly efficient and scalable SPD feature representation. Our key innovation lies in the idea of summarizing data in a Riemannian geometric space instead of the vector space. First, the whole training set is compressed with a small number of matrix features to ensure high scalability. Second, given such a compressed set, a constant-length vector representation is extracted by efficiently measuring the distribution variations between the summarized data and the latent feature of the Riemannian network. Finally, the proposed BoMS descriptor is integrated into the Riemannian network, upon which the whole framework is end-to-end trained via matrix back-propagation. Experiments on four different classification tasks demonstrate the superior performance of the proposed method over the state-of-the-art methods.


Author(s):  
M. Kostinger ◽  
M. Hirzer ◽  
P. Wohlhart ◽  
P. M. Roth ◽  
H. Bischof
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document