Design and Comparison of Passive Gate Driver Solution for Series-connected Power Devices in DC Circuit Breaker Applications

Author(s):  
Jian Liu ◽  
Lakshmi Ravi ◽  
Dong Dong ◽  
Rolando Burgos ◽  
Steve Schmalz
2021 ◽  
Author(s):  
Lakshmi Ravi ◽  
Jian Liu ◽  
Dong Dong ◽  
Rolando Burgos ◽  
Xiaoqing Song ◽  
...  

2012 ◽  
Vol E95.B (6) ◽  
pp. 1990-1996
Author(s):  
Seiya ABE ◽  
Sihun YANG ◽  
Masahito SHOYAMA ◽  
Tamotsu NINOMIYA ◽  
Akira MATSUMOTO ◽  
...  

Author(s):  
Shuo Zhang ◽  
Guibin Zou ◽  
Xiuyan Wei ◽  
Chengquan Zhang

2018 ◽  
Vol 924 ◽  
pp. 854-857
Author(s):  
Ming Hung Weng ◽  
Muhammad I. Idris ◽  
S. Wright ◽  
David T. Clark ◽  
R.A.R. Young ◽  
...  

A high-temperature silicon carbide power module using CMOS gate drive technology and discrete power devices is presented. The power module was aged at 200V and 300 °C for 3,000 hours in a long-term reliability test. After the initial increase, the variation in the rise time of the module is 27% (49.63ns@1,000h compared to 63.1ns@3,000h), whilst the fall time increases by 54.3% (62.92ns@1,000h compared to 97.1ns@3,000h). The unique assembly enables the integrated circuits of CMOS logic with passive circuit elements capable of operation at temperatures of 300°C and beyond.


Author(s):  
Lei Qi ◽  
Xilin Chen ◽  
Xinyuan Qu ◽  
Liangtao Zhan ◽  
Xiangyu Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document