Real-time data access control on B-tree index structures

Author(s):  
Tei-Wei Kuo ◽  
Chih-Hung Wei ◽  
Kam-Yiu Lam
Author(s):  
Haqi Khalid ◽  
Shaiful Jahari Hashim ◽  
Sharifah Mumtazah Syed Ahamed ◽  
Fazirulhisyam Hashim ◽  
Muhammad Akmal Chaudhary

2018 ◽  
Vol 7 (4.35) ◽  
pp. 609 ◽  
Author(s):  
Hidayah Sulaiman ◽  
Asma Magaireh ◽  
Rohaini Ramli

With the ever increasing cost of investing in technological innovations and the amount of patient data to be processed on daily basis, healthcare organizations are in dire need for solutions that could provide easy access and better management of real time data with lower cost.  The emerging trend of organizations optimizing cost in investing less on physical hardware has brought about the use of cloud computing technology in various industries including healthcare.  The use of cloud computing technology has brought better efficiency in providing real time data access, bigger storage capacity and reduction of cost in terms of maintenance. Although numerous benefits have been publicized for organizations to adopt the technology, nevertheless the rate of adoption is still at is infancy. Hence, this study explores factors that may affect the adoption of cloud-based technology particularly within the healthcare context. A quantitative study was conducted through the distribution of survey in Jordanian healthcare facilities. The survey was conducted to gauge the understanding of cloud-based EHR concepts identified through literature and validate the factors that could potentially provide an impact towards the cloud-based EHR adoption. The theoretical underpinnings of Technology-Organization-Environment (TOE) were investigated in studying the impact towards the adoption of cloud-based EHR. Results indicate that Technology-Organization-Environment factors such as privacy, reliability, security, top management support, organizational readiness, competition and regulatory environment are critical factors towards the adoption of cloud technology within a healthcare setting.


2020 ◽  
pp. 147592172097701
Author(s):  
D Maharjan ◽  
M Agüero ◽  
D Mascarenas ◽  
R Fierro ◽  
F Moreu

Decaying infrastructure maintenance cost allocation depends heavily on accurate and safe inspection in the field. New tools to conduct inspections can assist in prioritizing investments in maintenance and repairs. The industrial revolution termed as “Industry 4.0” is based on the intelligence of machines working with humans in a collaborative workspace. Contrarily, infrastructure management has relied on the human for making day-to-day decisions. New emerging technologies can assist during infrastructure inspections, to quantify structural condition with more objective data. However, today’s owners agree in trusting the inspector’s decision in the field over data collected with sensors. If data collected in the field is accessible during the inspections, the inspector decisions can be improved with sensors. New research opportunities in the human–infrastructure interface would allow researchers to improve the human awareness of their surrounding environment during inspections. This article studies the role of Augmented Reality (AR) technology as a tool to increase human awareness of infrastructure in their inspection work. The domains of interest of this research include both infrastructure inspections (emphasis on the collection of data of structures to inform management decisions) and emergency management (focus on the data collection of the environment to inform human actions). This article describes the use of a head-mounted device to access real-time data and information during their field inspection. The authors leverage the use of low-cost smart sensors and QR code scanners integrated with Augmented Reality applications for augmented human interface with the physical environment. This article presents a novel interface architecture for developing Augmented Reality–enabled inspection to assist the inspector’s workflow in conducting infrastructure inspection works with two new applications and summarizes the results from various experiments. The main contributions of this work to computer-aided community are enabling inspectors to visualize data files from database and real-time data access using an Augmented Reality environment.


Author(s):  
Basavaraj G.N ◽  
Jaidhar C.D

<span>Wireless sensor network (WSN) has attained wide adoption across various sectors and is considered to be key component of future real-time application such as BigData, Internet of things (IoT) etc. The modern application requires low latency and scalable real-time data access considering heterogeneous network. However, provisioning low latency real-time data access incurs energy overhead among sensor device. Clustering technique aided in providing scalability and minimizing energy consumption among sensor device. However, it incurs energy overhead among cluster head and sensor device closer to sink. To address, many optimization technique is been presented in recent time for optimal cluster selection. However, these technique are designed considering homogenous network. To address, this work presented Low Latency and Energy Efficient Routing (LLEER) design for heterogeneous WSN. The LLEER adopts multi-objective function such as</span><span>connectivity, connection time, radio signal strength, coverage time, and network traffic for cluster head and hop node selection. Experiment are conducted to evaluate LLEER design shows significant performance improvement over state-of-art model in terms of network lifetime considering total node death, first node death, and loss of connectivity, communication overhead, and packet transmission latency. Proposed LLEER brings a good trade-off between energy efficiency, and latency requirement of future real-time application.<span>   </span></span>


Sign in / Sign up

Export Citation Format

Share Document